

Content:

bubble cup 6
Problem A: Game.. 6
Problem B: Turing .. 8
Problem C: Code .. 11
Problem D: Jumping .. 15
Problem E: Hacker ... 18
Problem F: Scammer .. 22
Problem G: Unary ... 26
Problem H: Graffiti ... 28

bubble cup 7
Problem A: Forest Snake .. 31
Problem B: Calculator .. 33
Problem C: ForEST .. 37
Problem D: Search .. 40
Problem E: Cycles.. 42
Problem F: Compression ... 44
Problem G: Sticks .. 46
Problem H: Vectors ... 48

Problem I: Queries on an array ... 50

bubble cup 8
Problem A: Fibonotci ... 54
Problem B: Bribes ... 58
Problem C: Party .. 61
Problem D: Tablecity ... 64
Problem E: Spectator riots .. 67

Problem F: Bulbo ... 70
Problem G: Run for beer ... 73

Problem H: Bots .. 76

Problem I: Robots protection ... 79

bubble cup 9
Problem A: Cowboy Beblop at his computer .. 83
Problem B: Underfail .. 87
Problem C: Paint it really, really black ... 90
Problem D: Potions homework ... 93
Problem E: Festival organization .. 95
Problem F: Pokermon League challenge ... 97
Problem G: Heroes of Making Magic III .. 100
Problem H: Dexterina’s Lab .. 103

Problem I: R3D3’s summer adventure ... 105

bubble cup X
Problem A: Digits .. 108
Problem B: Neural Network Country .. 112
Problem C: Property .. 115
Problem D: Exploration plan ... 118
Problem E: Casinos and travel .. 121
Problem F: Product transformation .. 124

Problem G: Bathroom terminal .. 1126
Problem H: Bob and stages .. 129
Problem I: Dating .. 132

Welcome

Welcome

This book contains all problems from Bubble Cup finals from 6 to 10. It is intended for high school and university
students, and anyone else wanting to learn more about programming and algorithms. Solving the problems in this book
will require skills far greater than those that are taught in high schools and universities.

Don’t be discouraged if you can’t immediately solve the problems. They are intended to challenge the best programming
teams in the world, and as such are very difficult. We hope you expand your programming knowledge by learning new
interesting algorithmic tricks while reading this book.

Problem A: Game

bubble cup 6

4

Welcome

Welcome

This book contains all problems from Bubble Cup finals from 6 to 10. It is intended for high school and university
students, and anyone else wanting to learn more about programming and algorithms. Solving the problems in this book
will require skills far greater than those that are taught in high schools and universities.

Don’t be discouraged if you can’t immediately solve the problems. They are intended to challenge the best programming
teams in the world, and as such are very difficult. We hope you expand your programming knowledge by learning new
interesting algorithmic tricks while reading this book.

Problem A: Game

bubble cup 6

Problem A: Game

Problem A: Game
It is given a tree with 𝑁𝑁 nodes and number 𝐾𝐾. Lou is playing a game on that tree in such way:
In one move, he chooses one node and some 𝐾𝐾 neighbors of that node (he can choose only node with at least K
neighbors) and destroys them all. Destroyed nodes can’t be used later.
Since he wants that his game lasts as long as possible, tell him what is the maximal number of nodes, that he can destroy.

Input:
The first line contains two integer numbers 𝑁𝑁 and 𝐾𝐾. Each of the next 𝑁𝑁 − 1 lines contain two integer numbers 𝐴𝐴 and 𝐵𝐵 (in
the range 1. .𝑁𝑁) which represents that there is the edge in the tree between nodes A and B.

Output:
Output should contain one integer number which represents the maximal number of nodes that Lou can destroy.

Constraints:
• 1 ≤ N ≤ 105
• 0 ≤ K ≤ 105
• 1 ≤ A, B ≤ N

Example input: Example output:
9 2
1 2
1 3
2 4
2 5
3 6
3 7
4 8
4 9

9

Example explanation:
In the first move, he can choose node 4 and his neighbors 8 and 9 and destroy them all. In the second move he can chose
node 3 and his neighbors 6 and 7, and finally, he can choose node 2 and nodes 1 and 5.

> Time and memory limit: 1.0s / 256MB

6

Problem A: Game

Problem A: Game
It is given a tree with 𝑁𝑁 nodes and number 𝐾𝐾. Lou is playing a game on that tree in such way:
In one move, he chooses one node and some 𝐾𝐾 neighbors of that node (he can choose only node with at least K
neighbors) and destroys them all. Destroyed nodes can’t be used later.
Since he wants that his game lasts as long as possible, tell him what is the maximal number of nodes, that he can destroy.

Input:
The first line contains two integer numbers 𝑁𝑁 and 𝐾𝐾. Each of the next 𝑁𝑁 − 1 lines contain two integer numbers 𝐴𝐴 and 𝐵𝐵 (in
the range 1. .𝑁𝑁) which represents that there is the edge in the tree between nodes A and B.

Output:
Output should contain one integer number which represents the maximal number of nodes that Lou can destroy.

Constraints:
• 1 ≤ N ≤ 105
• 0 ≤ K ≤ 105
• 1 ≤ A, B ≤ N

Example input: Example output:
9 2
1 2
1 3
2 4
2 5
3 6
3 7
4 8
4 9

9

Example explanation:
In the first move, he can choose node 4 and his neighbors 8 and 9 and destroy them all. In the second move he can chose
node 3 and his neighbors 6 and 7, and finally, he can choose node 2 and nodes 1 and 5.

> Time and memory limit: 1.0s / 256MB

Problem A: Game

Solution and analysis:
The task is to find how many disjunctive (K+1) stars there are in a tree.
Usually, one of the first things that come to the mind in the problem like this is dynamic programming in a tree, which leads
to the solution in this task as well.
For each vertex (node) x, we will calculate the maximum number of disjunctive stars that we can make in its subtree. To do
that, we will need several values:
• d[x].Zero – the maximum number of stars that we can make if we do not take vertex x at all
• d[x].Kdown – the maximum number of stars that we can make if we take vertex x and its K children
• d[x].Onedown – the maximum number of stars that we can make if we take vertex, one of his children and K-2 children

of chosen children
• d[x].Kminus1down – the maximum number of stars that we can make if we take vertex x, his father and his K-1 children
• d[x].MaxWithoutFather – max(d[x].Zero, d[x].Kdown, d[x].Onedown).

We will calculate these values in a following way:
• For d[x].Zerodown is easy, just sum up all d[u].MaxWithoutFather for all u where u is child of x.
• It is a bit harder for d[x].Kdown and d[x].Kminus1down. First, we will show how to calculate d[x].Kdown and then

d[x].Kminus1down can be computed in a similar way.

Suppose that the set S is a set of K vertices that we take to form a star with node x (their father). The number of stars in a
subtree of node x will then be:
In all formulas below, u is every child of x

∑𝑑𝑑[𝑢𝑢].𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍
𝑢𝑢∈𝑆𝑆

𝑢𝑢
+ ∑𝑑𝑑[𝑢𝑢].𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑢𝑢𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑍𝑍

𝑢𝑢∉𝑆𝑆

𝑢𝑢

Therefore, we want to find the set S for which that sum is maximal. The sum above can be written in a following way as well:

∑𝑑𝑑[𝑢𝑢].𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑢𝑢𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑍𝑍
𝑢𝑢

−∑(𝑑𝑑[𝑢𝑢].𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑢𝑢𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑍𝑍 − 𝑑𝑑[𝑢𝑢].𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍)
𝑢𝑢∈𝑆𝑆

𝑢𝑢

Because first sum is constant for all sets S, we should just choose K children (u) for which 𝑑𝑑[𝑢𝑢].𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑢𝑢𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑍𝑍 −
𝑑𝑑[𝑢𝑢].𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 are minimal. We can do that simply by sorting children by that value. For d[u]. Kminus1down it’s all the same, just
instead of K children, we will choose first K-1 children.
For d[x].Onedown, we should choose node y for which this sum is maximal:

∑𝑑𝑑[𝑢𝑢].𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑢𝑢𝑀𝑀𝑜𝑜𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑍𝑍
𝑢𝑢

− 𝑑𝑑[𝑦𝑦].𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑢𝑢𝑀𝑀ℎ𝑜𝑜𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑍𝑍 + 𝑑𝑑[𝑦𝑦].𝐾𝐾𝐾𝐾𝑀𝑀𝐾𝐾𝑢𝑢𝐾𝐾1𝑑𝑑𝑍𝑍𝑑𝑑𝐾𝐾

And that is the node with maximal 𝑑𝑑[𝑦𝑦].𝐾𝐾𝐾𝐾𝑀𝑀𝐾𝐾𝑢𝑢𝐾𝐾1𝑑𝑑𝑍𝑍𝑑𝑑𝐾𝐾 − 𝑑𝑑[𝑦𝑦].𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑢𝑢𝑀𝑀ℎ𝑜𝑜𝑀𝑀𝑀𝑀ℎ𝑍𝑍𝑍𝑍.
After all these values calculated, the answer is simple: d[root].MaxWithoutFather.

7

Problem B: Turing

Problem B: Turing
You are given a Turing machine. Turing machine in this task consists of

1. A state register that stores the state of Turing machine. There are 52 different states, labeled with lowercase and
uppercase letters of English alphabet (‘𝑎𝑎’ − ‘𝑧𝑧’ and ‘𝐴𝐴’ − ‘𝑍𝑍’). At the beginning, the machine is in the state ‘𝑎𝑎’. State
‘𝐹𝐹’ is the final state – the execution of the machine halts if the machine gets into state ‘𝐹𝐹’.

2. A tape divided into 16 cells, one next to the other (a row of cells). Each cell contains either a symbol 0 or a symbol
1. At the beginning, symbol of each cell is set to 0.

3. A head that can read and write symbols on the tape. The head is a pointer to one cell. The head can move to
adjacent cells (left or right), but it must not move outside of tape bounds. At the beginning, the head points to the
first (leftmost) cell.

4. A program for the machine – set of instructions (transition functions). Instruction is a 5-tuple: 𝑄𝑄𝑐𝑐 𝑏𝑏𝑐𝑐 → 𝑄𝑄𝑛𝑛 𝑏𝑏𝑛𝑛 𝐷𝐷 that,
given the state(𝑄𝑄𝑐𝑐) the machine is currently in and the symbol(𝑏𝑏𝑐𝑐) it is currently reading (symbol of a cell which the
head is currently pointing to) tells the machine to do the following in sequence:

a. Write the new symbol (𝑏𝑏𝑛𝑛) to a cell which the head is currently pointing to
b. Move the head, which is described by direction (𝐷𝐷) (‘L’ – left; ‘R’ – right; ‘N’ – stay at the same cell)
c. Change the state of the machine to the new state (𝑄𝑄𝑛𝑛)

One operation is one execution of the instruction. Your task is to write a valid program for this Turing machine that does
at least 1024 operations.
Program is valid if it halts (reaches the final state), head does not move outside of tape bounds, instruction set does not
contain duplicate 𝑄𝑄𝑐𝑐 𝑏𝑏𝑐𝑐 pairs and machine never reaches a pair 𝑄𝑄𝑐𝑐 𝑏𝑏𝑐𝑐 such that no instruction is defined for the pair (unless
𝑄𝑄𝑐𝑐 is the final state).

Input:
There is no input.

Output:
The first line of output should contain one positive integer 𝑁𝑁 – the number of instructions. Each of the next 𝑁𝑁 lines should
contain 5 characters separated by spaces representing one instruction – 𝑉𝑉 𝑊𝑊 𝑋𝑋 𝑌𝑌 𝑍𝑍
𝑉𝑉 represents 𝑄𝑄𝑐𝑐; 𝑊𝑊 represents 𝑏𝑏𝑐𝑐; 𝑋𝑋 represents 𝑄𝑄𝑛𝑛; 𝑌𝑌 represents 𝑏𝑏𝑛𝑛; 𝑍𝑍 represents 𝐷𝐷;

𝑉𝑉,𝑋𝑋 ∈ {′𝑎𝑎′, … ,′ 𝑧𝑧′, ′𝐴𝐴′, … , ′𝑍𝑍′};
𝑊𝑊,𝑌𝑌 ∈ {0, 1};
𝑍𝑍 ∈ {𝐿𝐿,𝑅𝑅,𝑁𝑁}

> Time and memory limit: 1.0s / 256MB

8

Problem B: Turing

Problem B: Turing
You are given a Turing machine. Turing machine in this task consists of

1. A state register that stores the state of Turing machine. There are 52 different states, labeled with lowercase and
uppercase letters of English alphabet (‘𝑎𝑎’ − ‘𝑧𝑧’ and ‘𝐴𝐴’ − ‘𝑍𝑍’). At the beginning, the machine is in the state ‘𝑎𝑎’. State
‘𝐹𝐹’ is the final state – the execution of the machine halts if the machine gets into state ‘𝐹𝐹’.

2. A tape divided into 16 cells, one next to the other (a row of cells). Each cell contains either a symbol 0 or a symbol
1. At the beginning, symbol of each cell is set to 0.

3. A head that can read and write symbols on the tape. The head is a pointer to one cell. The head can move to
adjacent cells (left or right), but it must not move outside of tape bounds. At the beginning, the head points to the
first (leftmost) cell.

4. A program for the machine – set of instructions (transition functions). Instruction is a 5-tuple: 𝑄𝑄𝑐𝑐 𝑏𝑏𝑐𝑐 → 𝑄𝑄𝑛𝑛 𝑏𝑏𝑛𝑛 𝐷𝐷 that,
given the state(𝑄𝑄𝑐𝑐) the machine is currently in and the symbol(𝑏𝑏𝑐𝑐) it is currently reading (symbol of a cell which the
head is currently pointing to) tells the machine to do the following in sequence:

a. Write the new symbol (𝑏𝑏𝑛𝑛) to a cell which the head is currently pointing to
b. Move the head, which is described by direction (𝐷𝐷) (‘L’ – left; ‘R’ – right; ‘N’ – stay at the same cell)
c. Change the state of the machine to the new state (𝑄𝑄𝑛𝑛)

One operation is one execution of the instruction. Your task is to write a valid program for this Turing machine that does
at least 1024 operations.
Program is valid if it halts (reaches the final state), head does not move outside of tape bounds, instruction set does not
contain duplicate 𝑄𝑄𝑐𝑐 𝑏𝑏𝑐𝑐 pairs and machine never reaches a pair 𝑄𝑄𝑐𝑐 𝑏𝑏𝑐𝑐 such that no instruction is defined for the pair (unless
𝑄𝑄𝑐𝑐 is the final state).

Input:
There is no input.

Output:
The first line of output should contain one positive integer 𝑁𝑁 – the number of instructions. Each of the next 𝑁𝑁 lines should
contain 5 characters separated by spaces representing one instruction – 𝑉𝑉 𝑊𝑊 𝑋𝑋 𝑌𝑌 𝑍𝑍
𝑉𝑉 represents 𝑄𝑄𝑐𝑐; 𝑊𝑊 represents 𝑏𝑏𝑐𝑐; 𝑋𝑋 represents 𝑄𝑄𝑛𝑛; 𝑌𝑌 represents 𝑏𝑏𝑛𝑛; 𝑍𝑍 represents 𝐷𝐷;

𝑉𝑉,𝑋𝑋 ∈ {′𝑎𝑎′, … ,′ 𝑧𝑧′, ′𝐴𝐴′, … , ′𝑍𝑍′};
𝑊𝑊,𝑌𝑌 ∈ {0, 1};
𝑍𝑍 ∈ {𝐿𝐿,𝑅𝑅,𝑁𝑁}

> Time and memory limit: 1.0s / 256MB

Problem B: Turing

Solution and analysis:
Turing machine was invented in 1936 by Alan Turing. It is a hypothetical device representing a computing machine. Turing
machine is important in computational complexity theory, because it is easy to analyze mathematically, and it is believed it
is as powerful as any other model of computation. The Church-Turing thesis states that a function is algorithmically
computable if and only if it is computable by a Turing machine. There are different types of Turing machines, and some are
used to define complexity classes, such as deterministic Turing machines, non-deterministic Turing machines, probabilistic
Turing machines etc. However, Turing machine in this task is not a real Turing machine, because it does not have infinite
resources like the usual Turing machine. The tape is not unlimited and there is only 52 possible states of the machine.
This solution to this task is intended to be made “by hand”. While it should be possible to write a program that will write a
Turing machine program, it is much easier to use our human intelligence and intuition to come up with the solution to this
task. There are several different ideas for programs that would execute at least 1024 operations. We are going to present one
that is rather simple, has potential to do a lot more than 1024 operations and does not need a lot of instructions.
Since the cells of the tape can have either symbol 0 or symbol 1, we can view the tape as a binary number, which is the core
of the idea. By counting numbers on the tape (incrementing by one), we can count 216 numbers, since the tape has 16 cells.
This alone is greater than 1024 operations, and we have not even taken into account the operations needed to increment
each number. Of course, it might not be possible to count all the 216 numbers because we have to stop somehow, but it is not
needed.
Our program could count up to 29 − 1, which should be more than enough when we take into account the operations to
increment each number. There are several different ways to achieve this. The more significant bits will be to the right on the
tape, so the least significant bit of the number will be the leftmost bit. It is possible to use the leftmost cell as the least
significant, but it is better to use it for something else, so we can shorten our program.
At the beginning, we will set the value of the leftmost cell to 1. This will be an indicator that it is the end of the tape. It will be
used for the loop, which is going to be explained later on. We are going to use a different state for each cell when going to
the right. So, for the first bit we will use 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠1, for the second 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2, etc. (states can be mapped to English alphabet letters at
the end). The most significant bit is marked with 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠9 (because we are using 9 cells to represent a number). When
incrementing a number, we start incrementing from the lowest bit.
If the bit is incremented from 1 to 0, we carry one to the next bit to the right. When moving the head to the cell right, we go
from the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 to 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖+1. The special case is when we reach 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠9 and increment from 1 to 0 and it means that we have
counted all the numbers and can enter the final state and finish the execution.
If the current bit is incremented from 0 to 1, it means that we do not have to carry one and we have finished the
incrementation phase. Now we have to return to the least significant bit. This is a part where the 1 in the leftmost cell comes
in handy. All the cells left from the one the head is currently pointing at will have a value 0, except the one in the leftmost
cell. We can write a simple loop that will move us to the leftmost cell, and then we can just use an additional instruction to
move to the cell for the least significant bit (one to the right).
The loop is simple – while there is a 0 in the current cell, stay in the same state and move to the left. The loop ends when we
read the symbol 1. We then change the state and move to the right (lowest bit).
Example of this Turing machine loop:

X 0 X 0 L
X 1 Y 1 R

9

Problem B: Turing

When we reach the least significant bit, we can start with the incrementation phase again. This program needs only about 10
different machine states and it is quite short. The full program is given below:

21
a 0 x 1 R
x 0 x 1 N
x 1 b 0 R
b 0 L 1 L
b 1 c 0 R
c 0 L 1 L
c 1 d 0 R
d 0 L 1 L
d 1 e 0 R
e 0 L 1 L
e 1 f 0 R
f 0 L 1 L
f 1 g 0 R
g 0 L 1 L
g 1 h 0 R
h 0 L 1 L
h 1 i 0 R
i 0 L 1 L
i 1 F 0 R
L 0 L 0 L
L 1 x 1 R

10

Problem B: Turing

When we reach the least significant bit, we can start with the incrementation phase again. This program needs only about 10
different machine states and it is quite short. The full program is given below:

21
a 0 x 1 R
x 0 x 1 N
x 1 b 0 R
b 0 L 1 L
b 1 c 0 R
c 0 L 1 L
c 1 d 0 R
d 0 L 1 L
d 1 e 0 R
e 0 L 1 L
e 1 f 0 R
f 0 L 1 L
f 1 g 0 R
g 0 L 1 L
g 1 h 0 R
h 0 L 1 L
h 1 i 0 R
i 0 L 1 L
i 1 F 0 R
L 0 L 0 L
L 1 x 1 R

Problem C: Code

Problem C: Code
Gennady just passed lection Recursion on BubbleBee site, and then, he easily solved one task writing just a few lines of
code:

int_64 a[N];

int_64 sum(int x, int y) {

 int_64 s;

 s = 0;

 for(int i = x; i <= y; i++) s+=a[i];

 return s;

}

int_64 solve(int_64 left, int_64 right, int_64 index) {

 int_64 tmp,res;

 if (left == right) return a[left];

 res = solve(left, index, left) + sum(left, index) + solve(index+1, right, index+1) + sum(index+1, right);

 if (index+1 < right) {

 tmp = solve(left, right, index+1);

 if (tmp < res) res = tmp;

 }

 return res;

}

int_64 get_Answer() {

 read N;

 read array A of N elements;

 return solve(1, N, 1);

}

Unfortunately, he hasn’t learned about complexity of algorithms yet, so he didn’t know that his code is very inefficient.
Please, help him to efficiently solve this task for all test cases.

11

Problem C: Code

Input:
The first line contains one integer 𝑁𝑁. Next line contains 𝑁𝑁 integers that represents array 𝐴𝐴.

Output:
Output the same number that function get_Answer() from Gennady’s code returns.

Constraints:
• 1 ≤ N ≤ 3,000
• 0 ≤ Ai ≤ 109

Example input: Example output:
5
3 5 1 2 7

57

> Time and memory limit: 1.0s / 256MB

12

Problem C: Code

Input:
The first line contains one integer 𝑁𝑁. Next line contains 𝑁𝑁 integers that represents array 𝐴𝐴.

Output:
Output the same number that function get_Answer() from Gennady’s code returns.

Constraints:
• 1 ≤ N ≤ 3,000
• 0 ≤ Ai ≤ 109

Example input: Example output:
5
3 5 1 2 7

57

> Time and memory limit: 1.0s / 256MB

Problem C: Code

Solution and analysis:
First we should notice that the function solve() calculates the solution for an interval [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙], while the index is used to
iterate through that interval as a loop. Then, we could make an equivalent solve2() function:
int_64 solve2(int_64 left, int_64 right) {

 int_64 res;

 if (left == right) return a[left];

 res = infinity;

 for(int index = left+1; index < right; index++) {

 res = min(res, solve2(left, index) + sum(left, index) + solve2(index+1, right) + sum(index+1, right));

 }

 return res;

}

Now we can use a matrix 𝑑𝑑(𝑁𝑁𝑁𝑁𝑁𝑁) to store the solution for each [𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑙𝑙] interval, and not make further recursive calls
(this method is also known as memoization). The code complexity would then be 𝑂𝑂(𝑁𝑁3), as the sum() function could be
calculated in 𝑂𝑂(1) in a well-known way, storing prefix sums.
As 𝑂𝑂(𝑁𝑁3) is not good enough, we should further optimize the code.
Let 𝑚𝑚𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝,𝑟𝑟𝑝𝑝𝑟𝑟ℎ𝑝𝑝] be the index for which the solution of function solve2(left, right) has been found. Then, it can be proven
that the inequalities 𝑚𝑚𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝,𝑟𝑟𝑝𝑝𝑟𝑟ℎ𝑝𝑝] ≥ 𝑚𝑚𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝,𝑟𝑟𝑝𝑝𝑟𝑟ℎ𝑝𝑝−1] and 𝑚𝑚𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝+1,𝑟𝑟𝑝𝑝𝑟𝑟ℎ𝑝𝑝] ≤ 𝑚𝑚𝑟𝑟𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝,𝑟𝑟𝑝𝑝𝑟𝑟ℎ𝑝𝑝] are always valid.
This is also known as the Knuth optimization1.

1 The Art of Computer Programming, Donald Knuth

13

Problem C: Code

Now, if we keep track of 𝑚𝑚𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for each interval in a separate matrix, we could adjust the range in the solve2() function
loop in which we search the 𝑚𝑚𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝,𝑟𝑟𝑝𝑝𝑟𝑟ℎ𝑝𝑝] index, as shown in the following equivalent solve3() function:

int_64 d[N][N] = {infinity}, mid_point[N][N];

int_64 solve3(int_64 left, int_64 right) {

 int_64 res = infinity;

 if (d[left, right] != infinity) return d[left, right];

 if (left == right) {

 mid_point[left, left] = left;

 d[left, left] = a[left];

 return d[left, left];

 }

 for(int index = mid_point[left, right-1]; index < mid_point[left+1, right]; index++) {

 tmp = solve3(left, index) + sum(left, index) + solve3(index+1, right) + sum(index+1, right);

 if (tmp < res) {

 mid_point[left, right] = index;

 res = tmp;

 }

 }

 d[left,right] = res;

 return res;

}

As each element is checked exactly once while increasing the right interval limit, as well as exactly once while increasing the
left interval limit, the overall complexity is 𝑂𝑂(𝑁𝑁2). The exact mathematical proof of this is left to the reader to devise.

14

Problem C: Code

Now, if we keep track of 𝑚𝑚𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for each interval in a separate matrix, we could adjust the range in the solve2() function
loop in which we search the 𝑚𝑚𝑚𝑚𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝[𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝,𝑟𝑟𝑝𝑝𝑟𝑟ℎ𝑝𝑝] index, as shown in the following equivalent solve3() function:

int_64 d[N][N] = {infinity}, mid_point[N][N];

int_64 solve3(int_64 left, int_64 right) {

 int_64 res = infinity;

 if (d[left, right] != infinity) return d[left, right];

 if (left == right) {

 mid_point[left, left] = left;

 d[left, left] = a[left];

 return d[left, left];

 }

 for(int index = mid_point[left, right-1]; index < mid_point[left+1, right]; index++) {

 tmp = solve3(left, index) + sum(left, index) + solve3(index+1, right) + sum(index+1, right);

 if (tmp < res) {

 mid_point[left, right] = index;

 res = tmp;

 }

 }

 d[left,right] = res;

 return res;

}

As each element is checked exactly once while increasing the right interval limit, as well as exactly once while increasing the
left interval limit, the overall complexity is 𝑂𝑂(𝑁𝑁2). The exact mathematical proof of this is left to the reader to devise.

Problem D: Jumping

Problem D: Jumping
Egor has written an array which consists of 𝑁𝑁 natural numbers and in which all numbers are smaller than or equal to 𝑁𝑁.
Now he is playing with it in a following way:
In the beginning, he circles the first number in the array.
Whenever he circles a number 𝑋𝑋, he moves to the 𝑋𝑋th element in the array, circles it and repeats the procedure.
Egor always makes exactly 94294032599379535 steps and then stops playing. However, he has noticed that, sometimes
when he finishes the game, some elements of the array have never been circled, and he does not like that. Because of
that, he wants to change some elements of the array before he starts playing in such a way that, in the end, every number
has been circled at least once. Help him to calculate the minimum number of elements that he needs to change in order
to reach his aim.

Input:
The first line contains one integer 𝑁𝑁 number of elements of the array. Second line contains 𝑁𝑁 integers – elements of the
array.

Output:
Output contains one integer representing the minimum number of elements that Egor needs to change in order to reach
his goal – to circle every element in the array.

Constraints:
• 1 ≤ N ≤ 106
• 1 ≤ Ai ≤ N

Example input: Example output:
5
2 3 2 1 4

1

Example explanation:
If Egor doesn’t change any of the elements, then he will first circle the first number (2), then the second number (3), then
the third number (2), then the second number (3), then the third number… and in the end only the first, the second and
the third number will be circled.
If he changes the third number into 5, all elements will be circled.

> Time and memory limit: 1.0s / 256MB

15

Problem D: Jumping

Solution and analysis:
This problem is not difficult, but there is a number of edge cases we have to be careful about.
First, let’s rephrase the problem statement in terms of graph theory. We have a directed graph with 𝑁𝑁 vertices, and with
exactly one edge going out of each vertex. Our goal is to transform it into a graph from which, starting at node 1, we can
traverse the entire graph – and we have to do it with the minimal number of changed edges. In most cases this will have to
be a full cycle. The only other option is a path starting from vertex 1, traversing the entire graph but not looping back into
vertex 1.

Figure 1. An example of dividing the graph into three types of shapes – a line (1, 2), tail (3-8) and cycle (9-12)

What is the shape of our original graph? It is easy to see that the weakly connected components of the graph are cycles,
some of which have trees attached to them (like vertices 1, 2 and 4 in Figure 1). We will split each of these graph-tree
components into “tail” and “line” shapes, by picking a vertex with an in-degree of 0 and following the path from it until we
close a cycle or hit a vertex that we have already assigned to another line or tail.
Obviously, the split into lines, tails and cycles will in general not be uniquely determined for a graph, but the total number of
shapes will. This is because each weakly connected component will contain either exactly one shape (if it is a cycle) as many
shapes as it has vertices with an in-degree of zero (if it is not). We will denote this number with 𝐾𝐾.
Let us first concentrate on the case where we construct a full cycle. We can claim the following:

Lemma 1:

If the graph is not already a full cycle, the number of alterations needed to make it a full cycle cannot be less than 𝐾𝐾 - the
number of shapes in the graph.

4

21

3 8

5 6 7

11

12 9

10

16

Problem D: Jumping

Solution and analysis:
This problem is not difficult, but there is a number of edge cases we have to be careful about.
First, let’s rephrase the problem statement in terms of graph theory. We have a directed graph with 𝑁𝑁 vertices, and with
exactly one edge going out of each vertex. Our goal is to transform it into a graph from which, starting at node 1, we can
traverse the entire graph – and we have to do it with the minimal number of changed edges. In most cases this will have to
be a full cycle. The only other option is a path starting from vertex 1, traversing the entire graph but not looping back into
vertex 1.

Figure 1. An example of dividing the graph into three types of shapes – a line (1, 2), tail (3-8) and cycle (9-12)

What is the shape of our original graph? It is easy to see that the weakly connected components of the graph are cycles,
some of which have trees attached to them (like vertices 1, 2 and 4 in Figure 1). We will split each of these graph-tree
components into “tail” and “line” shapes, by picking a vertex with an in-degree of 0 and following the path from it until we
close a cycle or hit a vertex that we have already assigned to another line or tail.
Obviously, the split into lines, tails and cycles will in general not be uniquely determined for a graph, but the total number of
shapes will. This is because each weakly connected component will contain either exactly one shape (if it is a cycle) as many
shapes as it has vertices with an in-degree of zero (if it is not). We will denote this number with 𝐾𝐾.
Let us first concentrate on the case where we construct a full cycle. We can claim the following:

Lemma 1:

If the graph is not already a full cycle, the number of alterations needed to make it a full cycle cannot be less than 𝐾𝐾 - the
number of shapes in the graph.

Problem D: Jumping

Outline of proof:

If the graph consists of just a single tail shape, we obviously need at least one alteration. Otherwise, we can notice that none
of the shapes contain the entire set of vertices. This means that each shape will need at least one edge which connects it to
the other shapes, so it cannot remain unaltered.
Now let’s construct an algorithm that makes exactly 𝐾𝐾 alterations. For each shape we will select a start vertex and an end
vertex. For tails and lines there is a unique pick, while for cycles we can pick a vertex at random and make it both the start
and the end. We then apply the following algorithm:

1. Initialize a set of selected shapes 𝑆𝑆 = {∅}
2. Pick a shape 𝑠𝑠 and add it to 𝑆𝑆
3. Select a shape 𝑡𝑡 ∉ 𝑆𝑆, and alter the edge going out of the end vertex of s so that it points to the beginning vertex of 𝑡𝑡
4. If there is no such shape 𝑡𝑡, connect the end vertex of 𝑠𝑠 to the beginning vertex of the shape which was picked first

and terminate the algorithm
5. Repeat the steps 2 and 3 with the shape 𝑡𝑡 in place of 𝑠𝑠

It is clear that this algorithm ends up in the correct state after 𝐾𝐾 iterations, each iteration altering one edge. So, since there is
always a way to solve the problem with 𝐾𝐾 changes, and by lemma 1 we know that we can never solve it with less than 𝐾𝐾, this
means that the answer is exactly 𝐾𝐾.

Here we can notice that the change to the algorithm in order to cover our other end state (a path that begins with vertex 1
but does not necessarily loop back to it in the end) is minimal. Namely, if the vertex 1 was the starting point of a tail or a
line, we will pick that shape first, and omit the step in which we connect the end vertex of the last shape to it. And if vertex 1
was part of a cycle, we will pick it for both the start and end vertex, pick that cycle first and proceed as in the previous case.

This can be done in the following manner:

1. First, check if the graph already satisfies the conditions of the problem; if it does, output 0 and terminate.
2. Find all vertices that do not have any incoming edges. Denote their number with 𝐵𝐵. These vertices are beginnings of

tails and lines. If vertex 1 is among them, set a flag 𝐹𝐹.
3. Mark all vertices that belong to shapes beginning with vertices from the previous step. All unmarked vertices are

parts of cycles. If vertex 1 is unmarked, set the 𝐹𝐹 flag.
4. Count the number of cycles among the unmarked vertices. Denote this number with 𝐶𝐶.
5. If 𝐹𝐹 is not set, output 𝐵𝐵 + 𝐶𝐶 as the solution and terminate. Else, output 𝐵𝐵 + 𝐶𝐶 − 1 as the solution and terminate.

Each of the first four steps takes 𝑂𝑂(𝑁𝑁) time – notice that no vertex needs to be visited more than once in any individual step –
so the whole solution takes 𝑂𝑂(𝑁𝑁) time as well. The memory complexity is also 𝑂𝑂(𝑁𝑁).

17

Problem E: Hacker

Problem E: Hacker
Bob Bubbles and his brother Bub Bubbles always competed with each other. Since Bub Bubbles was making a lot of
bubblars (money currency in Bubbleland) with his scamming machine, Bob Bubbles thought about hacking into a bank, so
he can have more bubblars than his brother. In order to do that, he has opened 𝑁𝑁 programs on his computer. Each
program is a rectangular window with sides parallel to the sides of his high-resolution screen. Windows can overlap. He
also needed a special program Bubble Tracker to show him how close is he to be caught by cyber police, so he could
prevent it. The window of Bubble Tracker is a square and Bob wanted it always to be visible (it cannot intersect with other
windows and it must be inside the screen, but its sides can lie on the sides of other windows). He also needed it to be as
big as possible, but he couldn’t resize any of the already opened windows because it would lower his performance, so he
asked you for help. Help Bob Bubbles find the maximal length of the side of Bubble Tracker that can be fit in the screen,
so he can beat his brother.

Input:
The first line of the standard input contains two numbers 𝑊𝑊 and 𝐻𝐻, representing width and height of the screen,
respectively. Bottom-left corner of the screen is (0, 0) and top-right corner is (𝑊𝑊,𝐻𝐻). Next line contains number 𝑁𝑁,
number of programs Bob Bubbles has opened. Each of the next 𝑁𝑁 lines contains four integers 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖,,𝑊𝑊𝑖𝑖 ,𝐻𝐻𝑖𝑖 , coordinates of
bottom-left corner, width and height of the 𝑖𝑖𝑡𝑡ℎ window respectively.

Output:
On the first and only line of the standard output print the maximal length of the side of Bubble Tracker window.

Constraints:
• 1 ≤ H, W ≤ 109
• 1 ≤ N ≤ 40 000)
• 1 ≤ Xi, Yi, Wi, Hi ≤ 109
• Xi + Wi ≤ W, Yi + Hi ≤ H

Example input: Example output:
10 7
5
0 0 3 3
3 4 1 1
0 5 3 1
5 2 2 4
8 3 1 1

3

Example explanation:
One of the possible solutions of the sample test is shown in the picture on the right with bottom-left corner in (7, 0).

> Time and memory limit: 1.0s / 256MB

18

Problem E: Hacker

Problem E: Hacker
Bob Bubbles and his brother Bub Bubbles always competed with each other. Since Bub Bubbles was making a lot of
bubblars (money currency in Bubbleland) with his scamming machine, Bob Bubbles thought about hacking into a bank, so
he can have more bubblars than his brother. In order to do that, he has opened 𝑁𝑁 programs on his computer. Each
program is a rectangular window with sides parallel to the sides of his high-resolution screen. Windows can overlap. He
also needed a special program Bubble Tracker to show him how close is he to be caught by cyber police, so he could
prevent it. The window of Bubble Tracker is a square and Bob wanted it always to be visible (it cannot intersect with other
windows and it must be inside the screen, but its sides can lie on the sides of other windows). He also needed it to be as
big as possible, but he couldn’t resize any of the already opened windows because it would lower his performance, so he
asked you for help. Help Bob Bubbles find the maximal length of the side of Bubble Tracker that can be fit in the screen,
so he can beat his brother.

Input:
The first line of the standard input contains two numbers 𝑊𝑊 and 𝐻𝐻, representing width and height of the screen,
respectively. Bottom-left corner of the screen is (0, 0) and top-right corner is (𝑊𝑊,𝐻𝐻). Next line contains number 𝑁𝑁,
number of programs Bob Bubbles has opened. Each of the next 𝑁𝑁 lines contains four integers 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖,,𝑊𝑊𝑖𝑖 ,𝐻𝐻𝑖𝑖 , coordinates of
bottom-left corner, width and height of the 𝑖𝑖𝑡𝑡ℎ window respectively.

Output:
On the first and only line of the standard output print the maximal length of the side of Bubble Tracker window.

Constraints:
• 1 ≤ H, W ≤ 109
• 1 ≤ N ≤ 40 000)
• 1 ≤ Xi, Yi, Wi, Hi ≤ 109
• Xi + Wi ≤ W, Yi + Hi ≤ H

Example input: Example output:
10 7
5
0 0 3 3
3 4 1 1
0 5 3 1
5 2 2 4
8 3 1 1

3

Example explanation:
One of the possible solutions of the sample test is shown in the picture on the right with bottom-left corner in (7, 0).

> Time and memory limit: 1.0s / 256MB

Problem E: Hacker

Solution and analysis:
We are given starting rectangle with coordinates (0, 0, width, height) and N rectangles in it. Our task is to find length of the
biggest square that can be placed in the starting rectangle so that it doesn’t overlap with any other of the N given rectangles.
Suppose there is only one rectangle R(0, 0, x, y). We are going to resize it by some value k so it becomes R1(0, 0, x + k, y + k).
We can notice that for any point A that is not in the resized rectangle R1 (it can lie on the edge of rectangle R1 because sides
of windows in the task can touch each other), we can put square S with side of length k and top-right corner in A so that S
doesn’t overlap with starting rectangle R. Also, for each point B that is inside rectangle R1 we cannot put square S with top-
right corner in B because it will overlap with starting rectangle R. For example, if B is in the resized part of the rectangle,
either left or bottom edge of S will be inside rectangle R because length of the resized part is k.

Image 1. Rectangle (0, 0, x, y) and resized rectangle (0, 0, x + k, y + k)
If we resize each rectangle by k (if rectangle resized by k goes out from the starting rectangle then it should be trimmed so it
stays inside) and there exists point A which is not inside of any resized rectangle, we can put square S with top-right corner in
A such that it doesn’t overlap with any of the original (non-resized) rectangles. Notice that bottom and left edges of the
starting rectangle (0, 0, 0, height) and (0, 0, width, 0) should be considered as rectangles too. We should only check if some
point A exists (we don’t need to know its location).
Solution will always be an integer and that comes from the fact that if there exists solution k’ for which opposite sides don’t
lie on two rectangles then there exists some solution k > k’ (we can expand square until it touches at least two rectangles).
And since all the inputs are integers then the distance between two rectangles that are “touched” is integer and so is the
solution.
How to check if there is a point which is not inside any rectangle? Point must be inside of the starting rectangle (0, 0, width,
height) and rectangles are inside of the starting rectangle, so we are going to find area of union of rectangles and check if it
equals to area of the starting rectangle (height * width). If it differs then there exists some point A which is not in any of the
rectangles, but also not lying on the edges of rectangles, which should be allowed. This issue can be solved using the fact that
all numbers are integers thus if we expand rectangles by value k-1 and there is a point A(x, y) which is not inside any
rectangle and not lying on the edges of any rectangle then there is a point B(ceil(x), ceil(y)) which in the worst case would lie
on one of the sides of some rectangle and be the top-right corner of square S with side length equal to k.
Since we know how to check if solution with value k is possible, we could use binary search to iterate through solutions and
check whether or not the solution is possible and output the highest possible solution.

19

Problem E: Hacker

Union of the rectangles:

Given N axis-aligned rectangles, calculate the area of their union. We can solve it using sweep line algorithm where events
are left and right edges of the rectangles. When we cross the left edge, the rectangle is added to the active set. When we cross
the right edge, it is removed from the active set. We now know which rectangles are cut by the sweep line, but we actually
need to know what is the length L of the sweep line parts which are intersected by these active rectangles. After processing
the event, we can add distance between last two sweep line events multiplied by L to union area.
Every time we add rectangle to the active set, we actually insert vertical segment [A, B] which is representing the rectangle, in
some data structure. Length of the sweep line parts which are intersected by active rectangles is length of the union of
segments in the data structure.
We need a structure with three main methods addSegment(A, B), removeSegment(A, B) and getUnionOfSegments(). It can be
solved using segment tree data structure. Let’s create base segments first, intervals such that no horizontal edge crosses
them, except in endpoints, as shown in the image 2.

Image 2. Segments on the right are representing base segments

Each leaf node of the segment tree will represent one base segment. Every other node will represent segment of the left child
merged with segment of the right child, [A, B] = merge([A, C], [C, B]). Also, for each node we will save two more variables,
length of the union of all segments in the data tree which intersect with segment [A, B] and number of whole segments [A, B]
in the segment tree at the moment.

Updating when segment is added in the tree is done using the following algorithm:
1. We are starting from root node and inserting segment [A, B]
2. If segment [C, D] which is covered by current node equals to [A, B] then whole segment [C, D] is covered for use so length

of union of segments under the current node is equal to [A, B] and number of whole segments [A, B] is increased by one
3. Otherwise, find intersection [C, D] of segment [A, B] with segment of left child. Call the function recursively for left child

and segment [C, D]. Do the same for right child.
3.1. Update length for the current node so that it equals to sum of length for both children.

20

Problem E: Hacker

Union of the rectangles:

Given N axis-aligned rectangles, calculate the area of their union. We can solve it using sweep line algorithm where events
are left and right edges of the rectangles. When we cross the left edge, the rectangle is added to the active set. When we cross
the right edge, it is removed from the active set. We now know which rectangles are cut by the sweep line, but we actually
need to know what is the length L of the sweep line parts which are intersected by these active rectangles. After processing
the event, we can add distance between last two sweep line events multiplied by L to union area.
Every time we add rectangle to the active set, we actually insert vertical segment [A, B] which is representing the rectangle, in
some data structure. Length of the sweep line parts which are intersected by active rectangles is length of the union of
segments in the data structure.
We need a structure with three main methods addSegment(A, B), removeSegment(A, B) and getUnionOfSegments(). It can be
solved using segment tree data structure. Let’s create base segments first, intervals such that no horizontal edge crosses
them, except in endpoints, as shown in the image 2.

Image 2. Segments on the right are representing base segments

Each leaf node of the segment tree will represent one base segment. Every other node will represent segment of the left child
merged with segment of the right child, [A, B] = merge([A, C], [C, B]). Also, for each node we will save two more variables,
length of the union of all segments in the data tree which intersect with segment [A, B] and number of whole segments [A, B]
in the segment tree at the moment.

Updating when segment is added in the tree is done using the following algorithm:
1. We are starting from root node and inserting segment [A, B]
2. If segment [C, D] which is covered by current node equals to [A, B] then whole segment [C, D] is covered for use so length

of union of segments under the current node is equal to [A, B] and number of whole segments [A, B] is increased by one
3. Otherwise, find intersection [C, D] of segment [A, B] with segment of left child. Call the function recursively for left child

and segment [C, D]. Do the same for right child.
3.1. Update length for the current node so that it equals to sum of length for both children.

Problem E: Hacker

Updating when segment is removed from the tree is done using the similar algorithm, except here length is updated after
number of whole segments [A, B] is equal to zero after removing. If node is leaf then it is zero, otherwise it is the sum of
lengths for both children.
We should notice that number of nodes updated on each level will be at most four due to the fact that parent node
represents merged segments for children nodes. When updating root node, and segment we are inserting is intersecting both
left and right parts of the tree, we will visit both children nodes. If not, then we will visit appropriate child node and do the
same. After that for the left part of the tree, if there exists an intersection with right child then it will be segment [C, D] which
is whole segment covered by the right child thus no nodes in right child sub-tree will be visited. It is analogous for the right
part of the tree.
Time complexity of the update methods is 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁) with constant of four. We are iterating through each of 2𝑁𝑁 events for
sweep line and calling update method for each event which gives us total complexity, for checking whether or not the
solution 𝑘𝑘 exists, of 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁).
Time complexity: 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚(𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤ℎ,ℎ𝑒𝑒𝑚𝑚𝑙𝑙ℎ𝑤𝑤)), where 𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚(𝑤𝑤𝑚𝑚𝑤𝑤𝑤𝑤ℎ,ℎ𝑒𝑒𝑚𝑚𝑙𝑙ℎ𝑤𝑤) is binary search complexity for iterating
through solutions.
Memory complexity: 𝑂𝑂(𝑁𝑁).

21

Problem F: Scammer

Problem F: Scammer
Bub Bubbles is a scammer and criminal who specializes in money counterfeiting. He lives in Bubbleland. Bubbleland’s
currency is bubblar, famous for being impossible to counterfeit. Bub was aware of that, so he had to come up with a
different technique to get bubblars. He made a machine that can copy any other currency perfectly and print large
quantities of it. He could then go to the bank with the fake money and convert it to bubblars.
However, due to economic crisis, banks in Bubbleland exchange currencies in a non-standard way. The exchange rate can
be both positive and negative, and they give a fixed bonus amount of money regardless of the amount of money being
changed. Different currencies usually have different exchange rates, but not necessarily. Fixed bonuses are, however,
always different. For the benefit of their customers who are not good with mathematics, banks do not allow exchanges
where the amount of money bank has to pay to the customer is zero or negative (it would mean that the customer would
only lose money). Also, the bank has a limited amount of bubblars. Customer cannot exchange amount of money in
foreign currency that would result in amount of bubblars exceeding the bank limit.
Bub’s machine is powerful. Bub can just enter some positive real number which represents the amount of money machine
should print and the machine would calculate what would be the best currency to print the money in. The best currency is,
of course, the one that would get him the highest amount of bubblars (not higher than the bank limit). But, for some
amounts of money, there might exist multiple best currencies. Bub forgot about that when he made the machine, so when
he enters a number for which there is more than one best currency, the machine breaks down.
Your task is to calculate how many different amounts of money would break the machine down.

Input:
The first line contains one integer 𝑁𝑁 and one real number 𝑀𝑀 – number of different currencies and the bank limit. Each of
the next 𝑁𝑁 lines contains two real numbers 𝑟𝑟𝑖𝑖 and 𝑏𝑏𝑖𝑖 , representing the exchange rate and fixed bonus for the 𝑖𝑖th currency.
All the real numbers in the input contain exactly two fractional digits.

Output:
Output contains one integer representing the number of different amounts of money for which there exists more than
one currency that Bub could convert in the bank to get the highest amount of bubblars.

Constraints:
• 1 ≤ N ≤ 105
• 5 ≤ M ≤ 106
• The largest amount of money machine can print is 105
• -103 ≤ ri ≤ 103
• 0 ≤ bi ≤ 106
• No test case will have more than two best currencies for any amount of money

22

Problem F: Scammer

Problem F: Scammer
Bub Bubbles is a scammer and criminal who specializes in money counterfeiting. He lives in Bubbleland. Bubbleland’s
currency is bubblar, famous for being impossible to counterfeit. Bub was aware of that, so he had to come up with a
different technique to get bubblars. He made a machine that can copy any other currency perfectly and print large
quantities of it. He could then go to the bank with the fake money and convert it to bubblars.
However, due to economic crisis, banks in Bubbleland exchange currencies in a non-standard way. The exchange rate can
be both positive and negative, and they give a fixed bonus amount of money regardless of the amount of money being
changed. Different currencies usually have different exchange rates, but not necessarily. Fixed bonuses are, however,
always different. For the benefit of their customers who are not good with mathematics, banks do not allow exchanges
where the amount of money bank has to pay to the customer is zero or negative (it would mean that the customer would
only lose money). Also, the bank has a limited amount of bubblars. Customer cannot exchange amount of money in
foreign currency that would result in amount of bubblars exceeding the bank limit.
Bub’s machine is powerful. Bub can just enter some positive real number which represents the amount of money machine
should print and the machine would calculate what would be the best currency to print the money in. The best currency is,
of course, the one that would get him the highest amount of bubblars (not higher than the bank limit). But, for some
amounts of money, there might exist multiple best currencies. Bub forgot about that when he made the machine, so when
he enters a number for which there is more than one best currency, the machine breaks down.
Your task is to calculate how many different amounts of money would break the machine down.

Input:
The first line contains one integer 𝑁𝑁 and one real number 𝑀𝑀 – number of different currencies and the bank limit. Each of
the next 𝑁𝑁 lines contains two real numbers 𝑟𝑟𝑖𝑖 and 𝑏𝑏𝑖𝑖 , representing the exchange rate and fixed bonus for the 𝑖𝑖th currency.
All the real numbers in the input contain exactly two fractional digits.

Output:
Output contains one integer representing the number of different amounts of money for which there exists more than
one currency that Bub could convert in the bank to get the highest amount of bubblars.

Constraints:
• 1 ≤ N ≤ 105
• 5 ≤ M ≤ 106
• The largest amount of money machine can print is 105
• -103 ≤ ri ≤ 103
• 0 ≤ bi ≤ 106
• No test case will have more than two best currencies for any amount of money

Problem F: Scammer

Example input: Example output:
4 6.00
2.00 3.00
-1.00 9.00
0.00 1.40
4.50 0.50

2

Example explanation:
Printing and converting 1 in the first and fourth currencies gives the same highest amount of bubblars (2.00 ∙ 1 + 3.00 =
4.50 ∙ 1 + 0.50 = 5). Also, printing and converting 7.6 in the second and third currencies gives the same highest amount of
bubblars (−1.00 ∙ 7.6 + 9.00 = 0.00 ∙ 7.6 + 1.40 = 1.40). Note that while printing and converting 0.2 in the third and the
fourth currencies gives the same amount of bubblars, the first currency gives a higher amount of bubblars not higher than
the bank limit.

> Time and memory limit: 1.0s / 256MB

23

Problem F: Scammer

Solution and analysis:
This task is a geometry problem. It is not hard to see that the currencies are actually straight lines. Money exchange is a
linear equation 𝑦𝑦 = 𝑘𝑘𝑘𝑘 + 𝑏𝑏, where 𝑘𝑘 is the exchange rate, 𝑏𝑏 is the fixed bonus, 𝑘𝑘 is amount of money given to bank and 𝑦𝑦 is
amount of bubblars. Translated to geometry, 𝑘𝑘 is the slope of the line and 𝑏𝑏 is the 𝑦𝑦-intercept. The bank limit is a horizontal
line of the form 𝑦𝑦 = 𝑀𝑀. The best currency for some amount of money 𝑘𝑘 is the line that has the largest 𝑦𝑦 such that it is less
than or equal to 𝑀𝑀. Obviously, we are asked to count certain intersection points of lines. The intersection point (𝑘𝑘,𝑦𝑦) that
should be counted is the one that satisfies 𝑦𝑦 > 0, 𝑦𝑦 ≤ 𝑀𝑀, 𝑘𝑘 > 0, 𝑘𝑘 ≤ 105 and the line segment linking the intersection point
and the point (𝑘𝑘,𝑀𝑀) does not intersect any other lines.
Brute force solution is straightforward – find the intersection point of each pair of lines and test if it satisfies the necessary
conditions. There are 𝑂𝑂(𝑁𝑁2) intersection points and testing if there is a third line that intersects the corresponding line
segment has complexity 𝑂𝑂(𝑁𝑁) in the worst case, so the total complexity is 𝑂𝑂(𝑁𝑁3), which is not nearly good enough.
The appropriate solution to this problem uses divide and conquer technique. To explain the algorithm, we first define what is
a 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎. Cℎ𝑎𝑎𝑎𝑎𝑎𝑎 for a set of lines is a set of points such that a point (𝑘𝑘,𝑦𝑦) lying on any of the lines in the set is in the 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 if
and only if 𝑦𝑦 > 0, 𝑦𝑦 ≤ 𝑀𝑀, 𝑘𝑘 > 0, 𝑘𝑘 ≤ 105 and the line segment linking the point (𝑘𝑘,𝑦𝑦) and the point (𝑘𝑘,𝑀𝑀) does not
intersect any line from the set (except at the point (𝑘𝑘,𝑦𝑦)). 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 for some set of lines is shown in the Figure 1.

Figure 2. Bank limit is shown in blue and chain is shown in red color

Obviously, it is a set of line segments that can be sorted by the 𝑘𝑘 coordinate of the start point (or end point) in a unique way.
Number of intersections of two line segments, which can happen at the endpoint of one and start point of the other segment,
in 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is the solution to the problem for that specific set of lines.

24

Problem F: Scammer

Solution and analysis:
This task is a geometry problem. It is not hard to see that the currencies are actually straight lines. Money exchange is a
linear equation 𝑦𝑦 = 𝑘𝑘𝑘𝑘 + 𝑏𝑏, where 𝑘𝑘 is the exchange rate, 𝑏𝑏 is the fixed bonus, 𝑘𝑘 is amount of money given to bank and 𝑦𝑦 is
amount of bubblars. Translated to geometry, 𝑘𝑘 is the slope of the line and 𝑏𝑏 is the 𝑦𝑦-intercept. The bank limit is a horizontal
line of the form 𝑦𝑦 = 𝑀𝑀. The best currency for some amount of money 𝑘𝑘 is the line that has the largest 𝑦𝑦 such that it is less
than or equal to 𝑀𝑀. Obviously, we are asked to count certain intersection points of lines. The intersection point (𝑘𝑘,𝑦𝑦) that
should be counted is the one that satisfies 𝑦𝑦 > 0, 𝑦𝑦 ≤ 𝑀𝑀, 𝑘𝑘 > 0, 𝑘𝑘 ≤ 105 and the line segment linking the intersection point
and the point (𝑘𝑘,𝑀𝑀) does not intersect any other lines.
Brute force solution is straightforward – find the intersection point of each pair of lines and test if it satisfies the necessary
conditions. There are 𝑂𝑂(𝑁𝑁2) intersection points and testing if there is a third line that intersects the corresponding line
segment has complexity 𝑂𝑂(𝑁𝑁) in the worst case, so the total complexity is 𝑂𝑂(𝑁𝑁3), which is not nearly good enough.
The appropriate solution to this problem uses divide and conquer technique. To explain the algorithm, we first define what is
a 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎. Cℎ𝑎𝑎𝑎𝑎𝑎𝑎 for a set of lines is a set of points such that a point (𝑘𝑘,𝑦𝑦) lying on any of the lines in the set is in the 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 if
and only if 𝑦𝑦 > 0, 𝑦𝑦 ≤ 𝑀𝑀, 𝑘𝑘 > 0, 𝑘𝑘 ≤ 105 and the line segment linking the point (𝑘𝑘,𝑦𝑦) and the point (𝑘𝑘,𝑀𝑀) does not
intersect any line from the set (except at the point (𝑘𝑘,𝑦𝑦)). 𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 for some set of lines is shown in the Figure 1.

Figure 2. Bank limit is shown in blue and chain is shown in red color

Obviously, it is a set of line segments that can be sorted by the 𝑘𝑘 coordinate of the start point (or end point) in a unique way.
Number of intersections of two line segments, which can happen at the endpoint of one and start point of the other segment,
in 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is the solution to the problem for that specific set of lines.

Problem F: Scammer

If we are given two chains, we can merge them and get a new chain. Let’s call this operation mergeChains. To merge two
chains, assume that the start and end points of line segments in each chain are sorted with respect to 𝑥𝑥 coordinate. Just like
in mergesort, we are going keep two pointers, pointing to the current point in each chain. The pointers move parallelly – at
each step, we are going to increment the pointer that points to the point with lower 𝑥𝑥 coordinate. By keeping track of which
chain is currently higher (larger 𝑦𝑦 coordinate) and carefully processing intersections of line segments of these two chains, we
can build a new chain. Notice that the start and end points of this new chain are already sorted after this operation is
finished. The complexity of mergeChains operation is 𝑂𝑂(𝐾𝐾), where 𝐾𝐾 is number of points in the chain. An important fact
(which you can prove as an exercise) is that 𝐾𝐾 = 𝑂𝑂(𝑁𝑁), where 𝑁𝑁 is number of lines forming a chain. Therefore, the complexity
of this operation is 𝑂𝑂(𝑁𝑁). This also means that the solution for the whole problem, the number of relevant intersections, is
𝑂𝑂(𝑁𝑁).
Now, the goal of our algorithm is to build the 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎 for the whole set of lines. At the beginning, each line forms a 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎
containing at most one line segment. Therefore, we start with 𝑁𝑁 chains. Using mergeChains to merge first and second chain,
then third and fourth, then fifth and sixth and so on, we end up with ⌈𝑁𝑁2⌉ chains. Repeating this process, after 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁) steps
we end up with one final chain which we can use to count the total number of relevant intersections. Each step has the
complexity 𝑂𝑂(𝑁𝑁), so the total complexity of this algorithm is 𝑂𝑂(𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁).

25

Problem G: Unary

Problem G: Unary
Unary numeral system (base-1) is a numeral system where a number 𝐾𝐾 is represented with an arbitrarily chosen symbol
repeated 𝐾𝐾 times. The chosen symbol for this task is digit 1. Digit 0 will be used as a separator between two numbers.
Writing positive integers in unary system consecutively (using 0 to separate them), you get a sequence of digits:

101101110111101111101111110 …

By removing every second digit 1 from this sequence, you obtain a new sequence:

101101110111101111101111110 … → 10101011011101110 …

Given 𝑁𝑁, determine the 𝑁𝑁th digit of the resulting sequence.

Input:
The first and only line of input contains one positive integer 𝑁𝑁.

Output:
Output contains one character, either ′0′ or ′1′, representing the 𝑁𝑁th digit of the sequence.

Constraints:
• 1 ≤ N ≤ 1018

Example input: Example output:
6 0

> Time and memory limit: 1.0s / 256MB

26

Problem G: Unary

Problem G: Unary
Unary numeral system (base-1) is a numeral system where a number 𝐾𝐾 is represented with an arbitrarily chosen symbol
repeated 𝐾𝐾 times. The chosen symbol for this task is digit 1. Digit 0 will be used as a separator between two numbers.
Writing positive integers in unary system consecutively (using 0 to separate them), you get a sequence of digits:

101101110111101111101111110 …

By removing every second digit 1 from this sequence, you obtain a new sequence:

101101110111101111101111110 … → 10101011011101110 …

Given 𝑁𝑁, determine the 𝑁𝑁th digit of the resulting sequence.

Input:
The first and only line of input contains one positive integer 𝑁𝑁.

Output:
Output contains one character, either ′0′ or ′1′, representing the 𝑁𝑁th digit of the sequence.

Constraints:
• 1 ≤ N ≤ 1018

Example input: Example output:
6 0

> Time and memory limit: 1.0s / 256MB

Problem G: Unary

Solution and analysis:
First, let’s see how we determine the 𝑁𝑁th digit of the sequence without removing every second digit 1. After writing exactly 𝐾𝐾
numbers in the unary system consecutively, we are going to have exactly 𝐾𝐾 zeros as seperators, while the number of ones is
going to be

∑𝑖𝑖
𝐾𝐾

𝑖𝑖=1
= 𝐾𝐾(𝐾𝐾 + 1)

2 .

It follows that the 𝐾𝐾th zero in this sequence is at the position 𝐾𝐾 + 𝐾𝐾(𝐾𝐾+1)

2 . Therefore, if the positive solution for 𝐾𝐾 in the
following quadratic equation is integer, the 𝑁𝑁th digit is 0, otherwise it is 1.

𝐾𝐾 + 𝐾𝐾(𝐾𝐾 + 1)
2 = 𝑁𝑁

When we remove every second digit 1, the number of ones decreases by: ⌊
𝐾𝐾(𝐾𝐾+1)

2
2 ⌋.

Including the previous term in the quadratic equation, we get: 𝐾𝐾 + 𝐾𝐾(𝐾𝐾+1)

2 − ⌊𝐾𝐾(𝐾𝐾+1)
4 ⌋ = 𝑁𝑁.

This equation can also be solved for 𝐾𝐾 to check if the 𝑁𝑁th digit is either 0 or 1, but it is a bit trickier. Also, the standard form
for solving quadratic equation uses 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 function. This is an implementation problem because we get a term containing 𝑁𝑁 in
the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑁𝑁 can be as large as 1018. The precision of double data type is not good enough to perfectly represent such
large numbers.
One way of solving this is to use the solution to quadratic equation as an approximation, and then to test a few integers
smaller and a few integers larger than the approximated solution if they fit in the equation. If one of those integers is a
solution, the 𝑁𝑁th digit is 0, otherwise it is 1. If we ignore the complexity of the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 function, this solution is 𝑂𝑂(1).
Another solution that is safer than the previous and uses only integers is to use binary search. By using binary search on 𝐾𝐾,
we can find the largest 𝐾𝐾 such that: 𝐾𝐾 + 𝐾𝐾(𝐾𝐾+1)

2 − ⌊𝐾𝐾(𝐾𝐾+1)
4 ⌋ ≤ 𝑁𝑁.

If such 𝐾𝐾 satisfies the equation 𝐾𝐾 + 𝐾𝐾(𝐾𝐾+1)

2 − ⌊𝐾𝐾(𝐾𝐾+1)
4 ⌋ = 𝑁𝑁, the 𝑁𝑁th digit is 0, otherwise it is 1. The complexity of binary

search is logarithmic, which is a bit more complex than the previous solution. However, this method is stable and does not
deal with floating-point arithmetic. Note that it is important to set the upper limit of the search to a number that is not much
larger than 2 ∙ 109, so that it it is large enough to find the solution, but not too large to cause overflow when using the 64-bit
integer data types.

27

Problem H: Graffiti

Problem H: Graffiti
Young artist Petr likes to draw graffiti. He just has found a long wall which consist of 𝑁𝑁 consecutive empty places,
numbered from 1 to 𝑁𝑁, where he can draw graffiti, and he wants to fill the whole wall with his masterpieces. Every hour he
wants to draw a new graffiti on another place on the wall, and he has already decided in which order he is going to do
that. When he draws a graffiti at place 𝑖𝑖 on the wall, and he wants to draw next graffiti at place 𝑗𝑗, he walks from place 𝑖𝑖 to
the place 𝑗𝑗 and he passes by all places between 𝑖𝑖 and 𝑗𝑗.
Interesting about young Petr is that he loves his work, and every time he passes by his graffiti, he has to take picture of it.
He doesn’t take a picture of graffiti that he has just drawn.
As said, he has already decided in what order he is going to draw graffiti and now he asks you to help him to find out how
many times he is going to take picture of each graffiti.

Input:
The first line of standard input contains number 𝑁𝑁, number of places on the wall. Next line contains 𝑁𝑁 distinct numbers
from interval [1. .𝑁𝑁] where 𝑖𝑖-th number represent the place on the wall where young Petr is going to draw graffiti at 𝑖𝑖-th
hour.

Output:
On the first and only line of standard output you should print 𝑁𝑁 numbers where 𝑖𝑖-th number represent the number of
times Petr is going to take a picture of the graffiti that is going to be drawn at 𝑖𝑖-th place on the wall.

Constraints:
• 1 ≤ N ≤ 100,000

Example input: Example output:
5
2 4 1 5 3

0 2 0 2 0

> Time and memory limit: 1.0s / 256MB

28

Problem H: Graffiti

Problem H: Graffiti
Young artist Petr likes to draw graffiti. He just has found a long wall which consist of 𝑁𝑁 consecutive empty places,
numbered from 1 to 𝑁𝑁, where he can draw graffiti, and he wants to fill the whole wall with his masterpieces. Every hour he
wants to draw a new graffiti on another place on the wall, and he has already decided in which order he is going to do
that. When he draws a graffiti at place 𝑖𝑖 on the wall, and he wants to draw next graffiti at place 𝑗𝑗, he walks from place 𝑖𝑖 to
the place 𝑗𝑗 and he passes by all places between 𝑖𝑖 and 𝑗𝑗.
Interesting about young Petr is that he loves his work, and every time he passes by his graffiti, he has to take picture of it.
He doesn’t take a picture of graffiti that he has just drawn.
As said, he has already decided in what order he is going to draw graffiti and now he asks you to help him to find out how
many times he is going to take picture of each graffiti.

Input:
The first line of standard input contains number 𝑁𝑁, number of places on the wall. Next line contains 𝑁𝑁 distinct numbers
from interval [1. .𝑁𝑁] where 𝑖𝑖-th number represent the place on the wall where young Petr is going to draw graffiti at 𝑖𝑖-th
hour.

Output:
On the first and only line of standard output you should print 𝑁𝑁 numbers where 𝑖𝑖-th number represent the number of
times Petr is going to take a picture of the graffiti that is going to be drawn at 𝑖𝑖-th place on the wall.

Constraints:
• 1 ≤ N ≤ 100,000

Example input: Example output:
5
2 4 1 5 3

0 2 0 2 0

> Time and memory limit: 1.0s / 256MB

Problem H: Graffiti

Solution and analysis:
If Petr walks from position 𝑖𝑖 to position 𝑗𝑗, we are going to consider interval [𝑖𝑖, 𝑗𝑗]. For given input we are getting 𝑁𝑁 − 1
intervals. Now for each position 𝑖𝑖 we have to find out how many intervals contains number 𝑖𝑖, but we take in consideration
only intervals after the one that starts with number 𝑖𝑖.
If there weren’t this last condition, if we were only asked to calculate for every position 𝑖𝑖 how many intervals contain that
number, we could solve it using well known data structure Segment Tree where each node would represent how many times
we crossed that whole interval, but we haven’t crossed whole interval represented by its father’s node. After updating
segment tree with each interval, the result for number 𝑖𝑖 would be sum of values in nodes on the path in segment tree from
root to the leaf that represents number 𝑖𝑖, let’s call that sum 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖). This is known as lazy propagation in
Segment Tree.
After updating segment tree with 𝑖𝑖-th interval (let’s say that interval is [𝑙𝑙, 𝑆𝑆]), we should find 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑆𝑆) and
remember that in array 𝑏𝑏𝑆𝑆𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆[𝑆𝑆]. After inserting all intervals in segment tree, results for 𝑖𝑖-th position is
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑖𝑖) − 𝑏𝑏𝑆𝑆𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆[𝑖𝑖].

29

Problem A: Forest Snake

bubble cup 7

Problem A: Forest Snake

Problem A: Forest Snake
Forest Snake lives somewhere in the big forest of Rudnik and he loves to travel a lot. This summer he decided to visit the
famous Micro forest which has many tourist attractions. The most popular among those attractions is Soft tree because of
its interesting property. This tree contains a lot of different types of fruits and every fruit has a letter on it. Forest Snake
loves palindromes and he decided to make palindrome from the letters of Soft tree. Amount of his happiness is equal to
the length of palindrome he makes.
Soft tree can be represented as a connected acyclic graph with 𝑁𝑁 nodes and 𝑁𝑁 − 1 edges where each node is one fruit
and some fruits are connected with edges. Forest snake can choose some node and walk to some other node, but he can
visit every edge exactly once. Help him and determine the tour with maximum amount of happiness.

Input:
The first line contains number of nodes 𝑁𝑁. The second line contains string of length 𝑁𝑁 where 𝑖𝑖𝑡𝑡ℎ character is written on
node with index 𝑖𝑖. Each of the next 𝑁𝑁 − 1 lines contain two integers 𝑢𝑢 and 𝑣𝑣, indicating that there is an edge between
nodes 𝑢𝑢 and 𝑣𝑣.

Output:
Output should contain a single integer which represents the maximum amount of Forest Snake’s happiness.

Constraints:
• 1 ≤ N ≤ 5,000
• 1 ≤ u, v ≤ N
• All characters are lowercase English letters

Example input: Example output:
6
badbca
1 2
1 3
1 4
4 5
4 6

4

> Time and memory limit: 3s / 256MB

Problem A: Forest Snake

bubble cup 7

31

Problem A: Forest Snake

Solution and analysis:

Solution 1:

The first solution is using trie data structure.
Suppose that the longest palindrome has odd length and its middle is at the current node. Now problem consist of finding
two node-disjoint chains which are adjacent to the current node and the strings they form are the same. We build trie from
every subtree rooted at node adjacent to the current node. The trie is built such that it contains all strings which start at the
root and end at some leaf. If two tries contain the same strings they are candidates for the solution because they are node-
disjoint. We can check whether a string occurs in more than one trie by merging all tries and keeping track of how many
times each node occurred. This can be done efficiently by keeping only current trie and union of all tries so far. When the
current trie is built we merge it with union. The whole procedure has linear time complexity and when we pick every node as
middle overall complexity is quadratic on number of nodes. Memory complexity is linear. Solution is similar for the strings
with even length: for every edge build two tries from its endpoints, merge them and check if some string occurs in both tries.

Solution 2:

The second solution is using dynamic programming.
For every two nodes 𝑢𝑢 and 𝑣𝑣 calculate

𝑑𝑑𝑑𝑑𝑢𝑢,𝑣𝑣 = {
1, 𝑖𝑖𝑖𝑖 𝑢𝑢 𝑎𝑎𝑎𝑎𝑑𝑑 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑢𝑢𝑎𝑎𝑒𝑒

0, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑐𝑐 𝑒𝑒𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑐𝑐 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑓𝑓(𝑢𝑢,𝑣𝑣),𝑓𝑓(𝑣𝑣,𝑢𝑢) + 2 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑐𝑐 𝑒𝑒𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑢𝑢𝑎𝑎𝑒𝑒 𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑𝑑𝑑𝑓𝑓(𝑢𝑢,𝑣𝑣),𝑓𝑓(𝑣𝑣,𝑢𝑢) > 0

where 𝑖𝑖(𝑢𝑢, 𝑣𝑣) is the first node on path from 𝑢𝑢 to 𝑣𝑣. Calculating all values of 𝑖𝑖 has quadratic time complexity, and all 𝑑𝑑𝑑𝑑
values can be calculated in quadratic time using memoization. Overall, this solution has quadratic memory and time
complexity.

Summary:

Although the first solution has better memory complexity the second one has smaller time constant and it is far easier to
implement.

32

Problem A: Forest Snake

Solution and analysis:

Solution 1:

The first solution is using trie data structure.
Suppose that the longest palindrome has odd length and its middle is at the current node. Now problem consist of finding
two node-disjoint chains which are adjacent to the current node and the strings they form are the same. We build trie from
every subtree rooted at node adjacent to the current node. The trie is built such that it contains all strings which start at the
root and end at some leaf. If two tries contain the same strings they are candidates for the solution because they are node-
disjoint. We can check whether a string occurs in more than one trie by merging all tries and keeping track of how many
times each node occurred. This can be done efficiently by keeping only current trie and union of all tries so far. When the
current trie is built we merge it with union. The whole procedure has linear time complexity and when we pick every node as
middle overall complexity is quadratic on number of nodes. Memory complexity is linear. Solution is similar for the strings
with even length: for every edge build two tries from its endpoints, merge them and check if some string occurs in both tries.

Solution 2:

The second solution is using dynamic programming.
For every two nodes 𝑢𝑢 and 𝑣𝑣 calculate

𝑑𝑑𝑑𝑑𝑢𝑢,𝑣𝑣 = {
1, 𝑖𝑖𝑖𝑖 𝑢𝑢 𝑎𝑎𝑎𝑎𝑑𝑑 𝑣𝑣 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑢𝑢𝑎𝑎𝑒𝑒

0, 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑐𝑐 𝑒𝑒𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑐𝑐 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑𝑓𝑓(𝑢𝑢,𝑣𝑣),𝑓𝑓(𝑣𝑣,𝑢𝑢) + 2 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑑𝑑𝑐𝑐𝑎𝑎𝑑𝑑𝑖𝑖𝑎𝑎𝑐𝑐 𝑒𝑒𝑎𝑎𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑒𝑒𝑢𝑢𝑎𝑎𝑒𝑒 𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑𝑑𝑑𝑓𝑓(𝑢𝑢,𝑣𝑣),𝑓𝑓(𝑣𝑣,𝑢𝑢) > 0

where 𝑖𝑖(𝑢𝑢, 𝑣𝑣) is the first node on path from 𝑢𝑢 to 𝑣𝑣. Calculating all values of 𝑖𝑖 has quadratic time complexity, and all 𝑑𝑑𝑑𝑑
values can be calculated in quadratic time using memoization. Overall, this solution has quadratic memory and time
complexity.

Summary:

Although the first solution has better memory complexity the second one has smaller time constant and it is far easier to
implement.

Problem B: Calculator

Problem B: Calculator
Your task is to implement a special calculator. Like an ordinary calculator, the user can type in a mathematical expression,
but that is where similarities end. This calculator lacks some features compared to ordinary calculators - for example, it
cannot do subtraction or division. But it can also do some things ordinary calculators are not able to do: after the user
types in an expression, she can choose to calculate only a part of it between a given starting and ending point, and she
can do it as many times as she likes for the same expression. The calculator supports the following elements of input:

• Non-negative integers
• Arithmetical operators: +, *
• Brackets: (,)

Input:
The first line contains one integer 𝑝𝑝 – the number of elements in the expression. The second line contains the expression
𝐸𝐸, comprised of elements listed in the text above. Each element of the expression is separated by a single space character
on both sides. The third line contains one integer 𝑁𝑁 – the number of requests for calculation on 𝐸𝐸. Each of the next 𝑁𝑁 lines
contain 2 integers, representing the starting and ending element in the expression that should be calculated. Each number,
operator or bracket is a single element. It’s not important how many keys presses the user needs to make to obtain it).

Output:
The output contains 𝑁𝑁 lines – in every line there should be one integer, representing the result of the calculation. Since
the numbers can get very large, the output should be calculated modulo 109 + 7.

Constraints:
• 1 ≤ p ≤ 1,000,000
• For each integer k in the expression E, 1 ≤ k ≤ 10,000
• 1 ≤ N ≤ 100,000.
• 1 ≤ ai ≤ bi ≤ p, for each i ∈ {1…n}
• It is guaranteed that E will be a valid mathematical expression.
• It is guaranteed that all subexpressions of E that need to be calculated will be valid.
• It is guaranteed that all subexpressions of 𝐸𝐸 that need to be calculated will be valid. None of the subexpressions will

begin or end with a + or * sign, and all brackets will be properly matched.
Example input: Example output:
17
99 + (25 * (3 + 7) * 10 + 50) * 2
2
6 14
3 17

150
5100

> Time and memory limit: 2s / 128MB

33

Problem B: Calculator

Solution and analysis:
The obvious algorithm that solves the problem is the following:

For each query:

1. Extract the subexpression that needs to be calculated
2. Calculate the value of the subexpression

Step 2 is not completely trivial and we won’t go into details on how exactly to implement it, but it should be clear that it
requires 𝑂𝑂(𝑝𝑝)time, and the solution as a whole then requires 𝑂𝑂(𝑁𝑁 ∙ 𝑝𝑝) time in the worst case, which is clearly not fast enough
to finish under the time limit.
Intuitively, we should be able to do this faster because the algorithm described above computes certain expression fragments
over and over again. But how do we make use of this insight?
Let’s first solve an easier subset of the problem – we’ll assume that our expression does not contain any brackets. This means
that the expression can be written as a sum of products:

𝐸𝐸 = 𝑎𝑎11 ∙ 𝑎𝑎12 ∙ … ∙ 𝑎𝑎1𝑘𝑘1 + 𝑎𝑎21 ∙ … ∙ 𝑎𝑎2𝑘𝑘2 + ⋯+ 𝑎𝑎𝑙𝑙1 ∙ 𝑎𝑎𝑙𝑙2 ∙ … ∙ 𝑎𝑎𝑙𝑙𝑘𝑘𝑙𝑙

When the expression comes in but before we answer any queries, we can precompute some things.
For each number 𝑎𝑎𝑖𝑖𝑖𝑖 we will keep track of the following data:

1. 𝑖𝑖 and 𝑗𝑗
2. 𝑃𝑃𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖1 ∙ … ∙ 𝑎𝑎𝑖𝑖𝑖𝑖 – the left part of the product 𝑎𝑎𝑖𝑖𝑖𝑖 belongs to (including 𝑎𝑎𝑖𝑖𝑖𝑖)
3. 𝑃𝑃𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 ∙ … ∙ 𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖 – the right part of the product 𝑎𝑎𝑖𝑖𝑖𝑖 belongs to (including 𝑎𝑎𝑖𝑖𝑖𝑖)
4. 𝑆𝑆𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑎𝑎11 ∙ 𝑎𝑎12 ∙ … ∙ 𝑎𝑎1𝑖𝑖1 + ⋯+ 𝑎𝑎(𝑖𝑖−1)1 ∙ 𝑎𝑎(𝑖𝑖−1)2 ∙ … ∙ 𝑎𝑎(𝑖𝑖−1)𝑘𝑘𝑖𝑖−1 – the left part of the total sum, up to the product 𝑎𝑎𝑖𝑖𝑖𝑖

belongs to
5. 𝑆𝑆𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑖𝑖+1)1 ∙ 𝑎𝑎(𝑖𝑖+1)2 ∙ … ∙ 𝑎𝑎(𝑖𝑖+1)𝑘𝑘𝑖𝑖+1 + 𝑎𝑎𝑙𝑙1 ∙ 𝑎𝑎𝑙𝑙2 ∙ … ∙ 𝑎𝑎𝑙𝑙𝑘𝑘𝑙𝑙 – the right part of the total sum, starting with the product

after the product 𝑎𝑎𝑖𝑖𝑖𝑖 belongs to.
We will also calculate the value of the entire expression 𝐸𝐸 (which is just 𝑆𝑆𝐿𝐿 + 𝑃𝑃𝐿𝐿 for the last element in the expression).
How does this help us? We get a calculation request for the subexpression between elements 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑝𝑝𝑝𝑝. Assuming that 𝑖𝑖 ≠
𝑝𝑝, the formula

𝐸𝐸 − 𝑆𝑆𝐿𝐿𝑝𝑝𝑝𝑝 − 𝑆𝑆𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑃𝑃𝐿𝐿𝑝𝑝𝑝𝑝

gives us the correct result. This is easy to verify: 𝐸𝐸 − 𝑆𝑆𝐿𝐿𝑝𝑝𝑝𝑝 − 𝑆𝑆𝑅𝑅𝑖𝑖𝑖𝑖 calculates the sum of all products fully contained in the
subexpression, and 𝑃𝑃𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑃𝑃𝐿𝐿𝑝𝑝𝑝𝑝 adds the parts of the two products split by 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑝𝑝𝑝𝑝 respectively.
Since this is not correct if 𝑖𝑖 = 𝑝𝑝, we need a different formula for that case:

𝑃𝑃𝑅𝑅𝑖𝑖𝑖𝑖 ∙ 𝑎𝑎𝑝𝑝𝑝𝑝
𝑃𝑃𝑅𝑅𝑝𝑝𝑝𝑝⁄

Again, it is not difficult to see why this is correct.

34

Problem B: Calculator

Solution and analysis:
The obvious algorithm that solves the problem is the following:

For each query:

1. Extract the subexpression that needs to be calculated
2. Calculate the value of the subexpression

Step 2 is not completely trivial and we won’t go into details on how exactly to implement it, but it should be clear that it
requires 𝑂𝑂(𝑝𝑝)time, and the solution as a whole then requires 𝑂𝑂(𝑁𝑁 ∙ 𝑝𝑝) time in the worst case, which is clearly not fast enough
to finish under the time limit.
Intuitively, we should be able to do this faster because the algorithm described above computes certain expression fragments
over and over again. But how do we make use of this insight?
Let’s first solve an easier subset of the problem – we’ll assume that our expression does not contain any brackets. This means
that the expression can be written as a sum of products:

𝐸𝐸 = 𝑎𝑎11 ∙ 𝑎𝑎12 ∙ … ∙ 𝑎𝑎1𝑘𝑘1 + 𝑎𝑎21 ∙ … ∙ 𝑎𝑎2𝑘𝑘2 + ⋯+ 𝑎𝑎𝑙𝑙1 ∙ 𝑎𝑎𝑙𝑙2 ∙ … ∙ 𝑎𝑎𝑙𝑙𝑘𝑘𝑙𝑙

When the expression comes in but before we answer any queries, we can precompute some things.
For each number 𝑎𝑎𝑖𝑖𝑖𝑖 we will keep track of the following data:

1. 𝑖𝑖 and 𝑗𝑗
2. 𝑃𝑃𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖1 ∙ … ∙ 𝑎𝑎𝑖𝑖𝑖𝑖 – the left part of the product 𝑎𝑎𝑖𝑖𝑖𝑖 belongs to (including 𝑎𝑎𝑖𝑖𝑖𝑖)
3. 𝑃𝑃𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 ∙ … ∙ 𝑎𝑎𝑖𝑖𝑘𝑘𝑖𝑖 – the right part of the product 𝑎𝑎𝑖𝑖𝑖𝑖 belongs to (including 𝑎𝑎𝑖𝑖𝑖𝑖)
4. 𝑆𝑆𝐿𝐿𝑖𝑖𝑖𝑖 = 𝑎𝑎11 ∙ 𝑎𝑎12 ∙ … ∙ 𝑎𝑎1𝑖𝑖1 + ⋯+ 𝑎𝑎(𝑖𝑖−1)1 ∙ 𝑎𝑎(𝑖𝑖−1)2 ∙ … ∙ 𝑎𝑎(𝑖𝑖−1)𝑘𝑘𝑖𝑖−1 – the left part of the total sum, up to the product 𝑎𝑎𝑖𝑖𝑖𝑖

belongs to
5. 𝑆𝑆𝑅𝑅𝑖𝑖𝑖𝑖 = 𝑎𝑎(𝑖𝑖+1)1 ∙ 𝑎𝑎(𝑖𝑖+1)2 ∙ … ∙ 𝑎𝑎(𝑖𝑖+1)𝑘𝑘𝑖𝑖+1 + 𝑎𝑎𝑙𝑙1 ∙ 𝑎𝑎𝑙𝑙2 ∙ … ∙ 𝑎𝑎𝑙𝑙𝑘𝑘𝑙𝑙 – the right part of the total sum, starting with the product

after the product 𝑎𝑎𝑖𝑖𝑖𝑖 belongs to.
We will also calculate the value of the entire expression 𝐸𝐸 (which is just 𝑆𝑆𝐿𝐿 + 𝑃𝑃𝐿𝐿 for the last element in the expression).
How does this help us? We get a calculation request for the subexpression between elements 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑝𝑝𝑝𝑝. Assuming that 𝑖𝑖 ≠
𝑝𝑝, the formula

𝐸𝐸 − 𝑆𝑆𝐿𝐿𝑝𝑝𝑝𝑝 − 𝑆𝑆𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑃𝑃𝐿𝐿𝑝𝑝𝑝𝑝

gives us the correct result. This is easy to verify: 𝐸𝐸 − 𝑆𝑆𝐿𝐿𝑝𝑝𝑝𝑝 − 𝑆𝑆𝑅𝑅𝑖𝑖𝑖𝑖 calculates the sum of all products fully contained in the
subexpression, and 𝑃𝑃𝑅𝑅𝑖𝑖𝑖𝑖 + 𝑃𝑃𝐿𝐿𝑝𝑝𝑝𝑝 adds the parts of the two products split by 𝑎𝑎𝑖𝑖𝑖𝑖 and 𝑎𝑎𝑝𝑝𝑝𝑝 respectively.
Since this is not correct if 𝑖𝑖 = 𝑝𝑝, we need a different formula for that case:

𝑃𝑃𝑅𝑅𝑖𝑖𝑖𝑖 ∙ 𝑎𝑎𝑝𝑝𝑝𝑝
𝑃𝑃𝑅𝑅𝑝𝑝𝑝𝑝⁄

Again, it is not difficult to see why this is correct.

Problem B: Calculator

How fast is this solution? The precompute step can be performed in 𝑂𝑂(𝑝𝑝) time. We can go through the expression from left to
right, saving cumulative sums and products and arrays as we go along to get 𝑃𝑃𝑃𝑃 and 𝑆𝑆𝑃𝑃. For 𝑃𝑃𝑃𝑃 and 𝑆𝑆𝑃𝑃, we do the same
thing from right to left. Answering queries can now be done in constant time – we only need to do a couple of array lookups
and arithmetic operations. (Note: not all constant-time operations are created equal. The division modulo 109 + 7 needs to
be implemented through exponentiation by squaring. You could write a naïve implementation that makes 109 + 7 steps,
which is still theoretically 𝑂𝑂(1) but the time limit checker will not be convinced by that argument ☺). The overall time
complexity of the solution is 𝑂𝑂(𝑝𝑝 + 𝑁𝑁).
Let us now solve the full problem. The presence of brackets changes the complete structure of the task, right? Well, not really.
Notice that, for each pair of brackets, it is impossible to construct a valid query that contains only one of the brackets and not
the other. This means that each query has to either fully reside within the pair of brackets, or fully cover the brackets and
everything inside them. This immediately gives us a way to reduce the problem to the solved case:

1. If the subexpression is fully contained within the brackets, we can safely ignore everything outside the brackets
2. If the subexpression generated by the query covers the brackets, we can replace the contents of the brackets with a

single number – the value of the expression delimited by the brackets
3.

Let’s do this on the example from the problem statement:

99 + (25 * (3 + 7) * 10 + 50) * 2
6 14

The subexpression is completely inside the outer pair of brackets, so we ignore everything else:

25 * (3 + 7) * 10 + 50

The remaining pair of brackets is covered by the subexpression, so we calculate it:

25 * 10 * 10 + 50

Now we have reduced the problem to the already solved case and we can solve it using the same algorithm. The only
remaining question is how to do the bracket handling work without impacting the algorithmic complexity. A straightforward
way to do this is with the help of a stack structure:

1. Set the number of encountered brackets so far to 𝑏𝑏 = 0.
2. Set the values we want to keep track of (current accumulated sum, current product, current values of 𝑖𝑖 and 𝑗𝑗) to their

initial values.
3. Go through the expression from left to right, keeping track of cumulative sums and products and saving values of

𝑃𝑃𝑃𝑃, 𝑆𝑆𝑃𝑃, 𝑖𝑖, 𝑗𝑗, 𝑏𝑏 for each element to an array.
a. If the current element is an open bracket, take the current state (current sum, current product, current values

of 𝑖𝑖 and 𝑗𝑗), put it on the stack, then reinitialize the state. Increase the number of encountered brackets by 1.
b. If the current element is a closed bracket, record the value of the whole expression 𝑆𝑆𝑆𝑆 within the bracket

(which should already be calculated as the accumulated sum within the bracket), then pop the previous
state from the stack. Keep calculating 𝑃𝑃𝑃𝑃 and 𝑆𝑆𝑃𝑃 for the remaining elements, as if everything within the
brackets was a single element with the value 𝑆𝑆𝑆𝑆.

4. Repeat steps 1-3, going from right to left this time and filling in values of 𝑃𝑃𝑃𝑃 and 𝑆𝑆𝑃𝑃.

35

Problem B: Calculator

The formulas for answering queries remain the same as in the previous case. The only difference is that, due to 𝑖𝑖 and 𝑗𝑗 being
“bracket-relative” now, we also have to check whether 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑝𝑝𝑝𝑝 to know when to use the first formula and when the second.
The complexity of this algorithm is the same as the complexity of the algorithm described earlier. We still keep track of just
one set of values for each expression element. The only additional operations during the precompute step are related to
handling of the stack, but there can be at most 𝑂𝑂(𝑝𝑝) of them. Answering queries is still done in 𝑂𝑂(1) time per query.

Notes:

1. The memory limit is 128MB, so there is more than enough memory to store all data. The memory complexity of the
solution is 𝑂𝑂(𝑝𝑝), but some amount of care has to be taken to not let the constant factor get out of hand.

2. All inputs and outputs can be handled as 32-bit integers, but using 32-bit numbers everywhere can overflow during
multiplication. So you either need to be careful and cast to 64-bit when it’s needed, or work with 64-bit numbers all
the way and try not to hit the memory limit.

36

Problem B: Calculator

The formulas for answering queries remain the same as in the previous case. The only difference is that, due to 𝑖𝑖 and 𝑗𝑗 being
“bracket-relative” now, we also have to check whether 𝑏𝑏𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑝𝑝𝑝𝑝 to know when to use the first formula and when the second.
The complexity of this algorithm is the same as the complexity of the algorithm described earlier. We still keep track of just
one set of values for each expression element. The only additional operations during the precompute step are related to
handling of the stack, but there can be at most 𝑂𝑂(𝑝𝑝) of them. Answering queries is still done in 𝑂𝑂(1) time per query.

Notes:

1. The memory limit is 128MB, so there is more than enough memory to store all data. The memory complexity of the
solution is 𝑂𝑂(𝑝𝑝), but some amount of care has to be taken to not let the constant factor get out of hand.

2. All inputs and outputs can be handled as 32-bit integers, but using 32-bit numbers everywhere can overflow during
multiplication. So you either need to be careful and cast to 64-bit when it’s needed, or work with 64-bit numbers all
the way and try not to hit the memory limit.

Problem C: ForEST

Problem C: ForEST
This year, ForEST (traditional festival for inhabitants of forests) is organized in Forest Snake’s forest. Best beer manufacturers
present their products and top jungle musicians have live performances in the middle of wood. Traditionally, monkeys take
care of security, and this year they decided to organize ForEST slightly different – there will be multiple fan pits in the forest.
The first pit is nearest to the stage, the second is immediately after the first and so on… Also it is known that first pit is inside
the second, which is inside the third… Fan pits are separated by long straight ribbons which are fixed to some trees in the
forest. Ticket price for the first fan pit is 𝑁𝑁 coins (forest coin is official currency in every forest in the world), for the second
𝑁𝑁 – 1,… For 𝑖𝑖𝑡𝑡ℎ fan pit price is 𝑁𝑁 − 𝑖𝑖 + 1. Being outside of any fan pit is free.
Position of every tree in forest can be represented with two integer coordinates, and every security ribbon can be
represented as straight line segment starting at one tree and ending at some other tree. So, one fan pit is actually convex
polygon with trees as vertices and ribbons as edges. Forest Snake is interested in following problem: given coordinates of
some animals in the forest, what price each of them paid for being at that place during ForEST?

Input:
The first line contains one integer 𝑁𝑁 – the number of fan pits. Each of the next 𝑁𝑁 lines start with the number of nodes of fan
pit 𝑀𝑀, followed by 𝑀𝑀 pairs of integers 𝑥𝑥 and 𝑦𝑦 – coordinates of nodes. The next line contains number 𝑄𝑄 – number of Snake’s
question. Each of the next 𝑄𝑄 lines contain pair of integers 𝑥𝑥 and 𝑦𝑦 representing the position of animals.

Output:
For each of the 𝑄𝑄 animals output a single integer per line which is equal to its ticket price.

Constraints:
• There is at least one fan pit
• Sum of number of nodes of all polygons doesn’t exceed 3 ∙105
• Every fan pit has at least three nodes
• 1 ≤ Q ≤ 3∙105
• -109 ≤ x, y ≤ 109
• It is guaranteed that the first polygon is inside the second, the second inside the third… N - 1th inside the Nth
• All polygons are convex and there is no animal standing on any ribbon or tree
• Nodes of the polygons are given in counterclockwise order

37

Problem C: ForEST

Example input: Example output:
2
3 -3 2 2 -3 3 5
4 10 10 -10 10 -10 -10 10 -10
3
0 0
100 100
6 3

2
0
1

> Time and memory limit: 3s / 64MB

38

Problem C: ForEST

Example input: Example output:
2
3 -3 2 2 -3 3 5
4 10 10 -10 10 -10 -10 10 -10
3
0 0
100 100
6 3

2
0
1

> Time and memory limit: 3s / 64MB

Problem C: ForEST

Solution and analysis:
For every convex polygon make upper and lower chain, such that upper chain contains all points on clockwise path from the
leftmost point of the polygon to the rightmost one. Similar, lower chain contains all points on counterclockwise path from the
leftmost to the rightmost point. Make array of all points from input (points from queries and polygons) and sort them by 𝑥𝑥
coordinate ascending. Also, make two stacks, one for upper chains and the other for lower chains. Stack should keep only
index of the last point visited so far. Traverse the array and check if current point is from polygon or from some query:

1. If the point is from polygon:
a. If it’s the leftmost point of some chain push its polygon on stack
b. If it’s the rightmost point of some chain pop its polygon from stack
c. Otherwise make current point be the last point of its chain

2. If the point is query point:

a. Check if it’s under all upper chains and then do binary search on lower chains, otherwise do the binary search on
upper chains. Binary search finds between which two chains the current point is located, and from that we can
easily calculate the number of polygons in which the point is located inside of.

Sorting all the points requires 𝑂𝑂(𝐾𝐾 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾) where 𝐾𝐾 is total number of points including those on polygon and from queries.
Every binary search requires 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁), which leads to total complexity 𝑂𝑂(𝐾𝐾 𝑙𝑙𝑙𝑙𝑙𝑙𝐾𝐾 + 𝑄𝑄 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁).

39

Problem D: Search

Problem D: Search
Alice is looking for a job and she has heard that one software company is hiring experts in run-length encoding (RLE). It is
a very simple form of data compression in which runs of data (that is, sequences in which the same data value occurs in
many consecutive data elements) are stored as a single data value and count, rather than as the original run. For example,
you can compress:

“WWWWWWWWWWWWBWWWWWWWWWWWWBBBBWWWWWWWWWWWWWW”
into: “12W1B12W4B14W”

“11522666”
into “21152236”
Alice is playing around with encoding of positive integers. One unit of data is a single digit, so she encodes each sequence
of the same digit as that digit and its count.
We can define a function Alice uses for encoding as 𝑅𝑅𝑅𝑅𝑅𝑅(𝐴𝐴) = 𝐵𝐵, where 𝐴𝐴 and 𝐵𝐵 are positive integers. However, since this
is a compression algorithm, Alice doesn’t consider an encoding valid if 𝐵𝐵 has more digits than 𝐴𝐴.
Alice encodes a number multiple times in a row, until the encoding is not valid. For example, number 333 can be encoded
two times in a row before the encoding gets invalid: 𝑅𝑅𝑅𝑅𝑅𝑅(333) = 33; 𝑅𝑅𝑅𝑅𝑅𝑅(33) = 23; 𝑅𝑅𝑅𝑅𝑅𝑅(23) = 1213 – number 1213 has
more digits than number 23 so the last encoding is not valid.
After playing with RLE she found one interesting number - 22. Number 22 can be encoded infinitely many times, because
𝑅𝑅𝑅𝑅𝑅𝑅(22) = 22.
Now she wants to find a positive integer different than 22, with no more than 100 digits, that can be encoded at least 5
times in a row before the encoding gets invalid. Help her!

Input:
There is no input for this problem.

Output:
Output a single positive integer Alice is looking for.

Constraints:
• Number of digits of the positive integer in the output must be ≤ 100
• Output must not be 22

Example input: Example output:
No example input No example output

> Time and memory limit: 0.1s / 64 MB

40

Problem D: Search

Problem D: Search
Alice is looking for a job and she has heard that one software company is hiring experts in run-length encoding (RLE). It is
a very simple form of data compression in which runs of data (that is, sequences in which the same data value occurs in
many consecutive data elements) are stored as a single data value and count, rather than as the original run. For example,
you can compress:

“WWWWWWWWWWWWBWWWWWWWWWWWWBBBBWWWWWWWWWWWWWW”
into: “12W1B12W4B14W”

“11522666”
into “21152236”
Alice is playing around with encoding of positive integers. One unit of data is a single digit, so she encodes each sequence
of the same digit as that digit and its count.
We can define a function Alice uses for encoding as 𝑅𝑅𝑅𝑅𝑅𝑅(𝐴𝐴) = 𝐵𝐵, where 𝐴𝐴 and 𝐵𝐵 are positive integers. However, since this
is a compression algorithm, Alice doesn’t consider an encoding valid if 𝐵𝐵 has more digits than 𝐴𝐴.
Alice encodes a number multiple times in a row, until the encoding is not valid. For example, number 333 can be encoded
two times in a row before the encoding gets invalid: 𝑅𝑅𝑅𝑅𝑅𝑅(333) = 33; 𝑅𝑅𝑅𝑅𝑅𝑅(33) = 23; 𝑅𝑅𝑅𝑅𝑅𝑅(23) = 1213 – number 1213 has
more digits than number 23 so the last encoding is not valid.
After playing with RLE she found one interesting number - 22. Number 22 can be encoded infinitely many times, because
𝑅𝑅𝑅𝑅𝑅𝑅(22) = 22.
Now she wants to find a positive integer different than 22, with no more than 100 digits, that can be encoded at least 5
times in a row before the encoding gets invalid. Help her!

Input:
There is no input for this problem.

Output:
Output a single positive integer Alice is looking for.

Constraints:
• Number of digits of the positive integer in the output must be ≤ 100
• Output must not be 22

Example input: Example output:
No example input No example output

> Time and memory limit: 0.1s / 64 MB

Problem D: Search

Solution and analysis:
The idea is to find the number which can be encoded 4 times, and then manually construct the number which can
be encoded into that number (so ultimately it can be encoded 5 times). To find the first number which can be encoded 4
times, we can use brute force solution. Straight forward brute force solution can be optimized with some heuristics. For
example, we don’t need to consider numbers that contain digits 5, 6, 7, 8 and 9 in itself, since they will not satisfy both
condition to have less than 100 digits, and to be encodable 5 times.
Smallest number different than 22 that can be encoded 4 times is 2233322211. Now, number
2233333333333333333333333333333333322222222222222222222221 (two times 2, thirty-three times 3, twenty-two
times 2 and one 1) can be encoded 5 times. Since this number has less than 100 digits, it is one of
the solutions. Another solution can be obtained from number 22333222112, and it will have less digits, 31 total. Number is
[2𝑥𝑥2, 3𝑥𝑥3, 3𝑥𝑥2, 22𝑥𝑥1, 1𝑥𝑥2].

41

Problem E: Cycles

Problem E: Cycles
You are given a graph 𝐺𝐺 with two spanning trees that share no edges. A cycle in 𝐺𝐺 is a connected subgraph whose vertices
have degree 2. Your task is to find a collection of cycles in 𝐺𝐺 such that every edge is in precisely two of your cycles. Such a
collection will always exist.

Input:
The first line contains two integers separated by an empty space: 𝑛𝑛 – the number of vertices and 𝑚𝑚 – the number of edges.
Every of the next 𝑛𝑛 lines contains 3 integers 𝑢𝑢,𝑣𝑣, 𝑙𝑙, separated with empty spaces, which represent the edge between vertices
𝑢𝑢 and 𝑣𝑣. The remaining integer 𝑙𝑙 can take values 0, 1, 2. Value 0 means that it is not in either of the spanning trees, 1 means
that it is in the first one, and 2 that it is in the second tree.

Output:
The first line of the output should contain a single integer 𝐶𝐶 – the number of cycles you produced. Every line that follows
should describe one of the 𝐶𝐶 cycles and should start by integer 𝑚𝑚 which is the size of the cycle and should then contain 𝑚𝑚
integers that specify the cycle (so that the edges are between the 1st and 2ndvertex, 2nd and 3rd vertex, etc. , and between
𝑚𝑚th and 1st). Any collection of cycles that contains every edge precisely twice is considered to be a valid solution.

Constraints:
• 1 ≤ n ≤ 500,000, 1 ≤ m ≤ 1,000,000, 2n – 2 ≤ m
• There are no loops or repeated edges

Example input: Example output:

5 10
1 2 1
2 3 1
3 4 1
4 5 1
1 5 0
1 3 2
3 5 2
5 2 2
2 4 2
1 4 0

4
5 1 2 3 4 5
5 1 3 5 2 4
5 2 3 1 4 5
5 5 3 4 2 1

> Time and memory limit: 10s / 256MB

1

2

3
4

5

42

Problem E: Cycles

Problem E: Cycles
You are given a graph 𝐺𝐺 with two spanning trees that share no edges. A cycle in 𝐺𝐺 is a connected subgraph whose vertices
have degree 2. Your task is to find a collection of cycles in 𝐺𝐺 such that every edge is in precisely two of your cycles. Such a
collection will always exist.

Input:
The first line contains two integers separated by an empty space: 𝑛𝑛 – the number of vertices and 𝑚𝑚 – the number of edges.
Every of the next 𝑛𝑛 lines contains 3 integers 𝑢𝑢,𝑣𝑣, 𝑙𝑙, separated with empty spaces, which represent the edge between vertices
𝑢𝑢 and 𝑣𝑣. The remaining integer 𝑙𝑙 can take values 0, 1, 2. Value 0 means that it is not in either of the spanning trees, 1 means
that it is in the first one, and 2 that it is in the second tree.

Output:
The first line of the output should contain a single integer 𝐶𝐶 – the number of cycles you produced. Every line that follows
should describe one of the 𝐶𝐶 cycles and should start by integer 𝑚𝑚 which is the size of the cycle and should then contain 𝑚𝑚
integers that specify the cycle (so that the edges are between the 1st and 2ndvertex, 2nd and 3rd vertex, etc. , and between
𝑚𝑚th and 1st). Any collection of cycles that contains every edge precisely twice is considered to be a valid solution.

Constraints:
• 1 ≤ n ≤ 500,000, 1 ≤ m ≤ 1,000,000, 2n – 2 ≤ m
• There are no loops or repeated edges

Example input: Example output:

5 10
1 2 1
2 3 1
3 4 1
4 5 1
1 5 0
1 3 2
3 5 2
5 2 2
2 4 2
1 4 0

4
5 1 2 3 4 5
5 1 3 5 2 4
5 2 3 1 4 5
5 5 3 4 2 1

> Time and memory limit: 10s / 256MB

1

2

3
4

5

Problem E: Cycles

Solution and analysis:
Since we’re already given spanning trees in the graph and we’re looking for cycles, it is natural to recall that given a tree 𝑇𝑇
and an edge 𝑒𝑒 not in the tree, there is a unique path in 𝑇𝑇 that joins the endpoints of 𝑒𝑒. In turn, this gives a cycle that contains
edge 𝑒𝑒. Write 𝑇𝑇1 for the first spanning tree that is given, and 𝑇𝑇2 for the second one. By applying this procedure to edges not in
𝑇𝑇1 and the tree 𝑇𝑇1, we get a collection of cycles that contain each edge not in 𝑇𝑇1 precisely once, while the edges of 𝑇𝑇1 can
possibly be contained in multiple cycles. If an edge is contained in more than two cycles, this is certainly a problem, given our
goal. The key observation now is that we can actually turn the current collection of cycles into a useful one by applying the
symmetric difference to the cycles. In other words, we pick the edges in an odd number of cycles in the current collection. It is
easy to see that this gives us an even subgraph 𝐻𝐻 (i.e. all vertices have even degrees), where we may perform Euler tour to
produce a new collection of cycles, that contain each edge of 𝐻𝐻 precisely once. Crucially, the new collection of cycles contains
each edge not in 𝑇𝑇1 precisely once, while the edges of 𝑇𝑇1 are contained at most once.
We can repeat the same procedure to tree 𝑇𝑇2. As the trees have no common edges, by taking a union of the two collections
produced so far, we obtain a collection of cycles that contains each edge of 𝐺𝐺 once or twice. Finally, we observe that taking
all edges that appear precisely once gives another even subgraph and performing Euler tour once more and adding these
cycles, produces a solution – a collection of cycles containing each edge precisely twice.
As far as the implementation is concerned, there is an important point – how to find the cycles coming from a spanning tree
efficiently? Recall that we actually do not need all the cycles given by paths along the tree, but actually only the resulting
even subgraph given by symmetric difference. For this it is actually sufficient to write at each node of a tree the number of
non-tree edges that are adjacent to it and then to pick tree edges whose subtrees have odd sum of numbers at nodes. Thus, a
simple tree traversal suffices.

To sum up, the algorithm looks as follows:

• For T1, for each node 𝑣𝑣, write the number of non-tree edges adjacent to 𝑣𝑣, and then perform a DFS traversal that
sums the numbers in subtrees and chooses the edges with odd subtree sum.

• Take the edges chosen above and add edges not in T1 to form an even subgraph.
• Perform Euler tour on this subgraph and add the resulting cycles to solution.
• Repeat all the steps above to T2
• Finally, form an even subgraph of edges appearing only once the cycles chosen so far.
• Perform another Euler tour to complete the solution.
• The algorithm has linear time and memory complexity.

43

Problem F: Compression

Problem F: Compression
A software company is making tools for data compression. One group of engineers is working on algorithms for
compression of really long textual data. Currently, they are implementing some variations of compression algorithm called
run-length encoding. Run-length encoding is a technique where consecutive runs (sequences) of same data are stored as
a run value and count. In this case specifically, algorithm takes a string 𝑆𝑆 as an input and compresses it into a new string
𝐶𝐶𝑠𝑠 using run-length encoding. 𝐶𝐶𝑠𝑠 is of the form

< 𝑟𝑟𝑟𝑟𝑟𝑟1 >< 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐1 >< 𝑟𝑟𝑟𝑟𝑟𝑟2 >< 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐2 > ⋯ < 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘 >< 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑘𝑘 >

where < 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 > is a non-empty string value and < 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 > is a positive integer value for each 𝑖𝑖 = 1. . 𝑘𝑘.
Decompressing 𝐶𝐶𝑠𝑠 back to 𝑆𝑆 works by repeating value of < 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 > exactly < 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 > times for each 𝑖𝑖 = 1. . 𝑘𝑘.
Obviously, 𝐶𝐶𝑠𝑠 may not be unique because it might be possible to split 𝑆𝑆 into runs in many different ways, so engineers are
experimenting with different approaches of splitting 𝑆𝑆 into runs. All of these approaches are optimized for compression
speed and low memory consumption of the algorithm, and not the compression efficiency, because in reality input data
can be several terabytes large and it is more important that compression is fast and does not take a lot of resources. To
measure compression efficiency, engineers will use smaller inputs and compare their approaches of splitting 𝑆𝑆 into runs to
the optimal way of splitting 𝑆𝑆 into runs – one that results in 𝐶𝐶𝑠𝑠 of minimum length. Help them by writing a program that
will calculate the minimum length of 𝐶𝐶𝑠𝑠.

Input:
The first line contains one integer 𝑁𝑁 – length of string 𝑆𝑆. The second line contains the string 𝑆𝑆.

Output:
Output contains one integer – minimum length of string 𝐶𝐶𝑠𝑠.

Constraints:
• 1 ≤ N ≤ 3,000

All letters of 𝑆𝑆 are lowercase letters of English alphabet

Example input: Example output:
12
aaaababababc

7

Example explanation:
Compressed string of the smallest length is 𝑎𝑎3𝑎𝑎𝑎𝑎4𝑐𝑐1. Some other possibilities for 𝐶𝐶𝑠𝑠 are 𝑎𝑎4𝑎𝑎𝑎𝑎3𝑎𝑎𝑐𝑐1, 𝑎𝑎𝑎𝑎2𝑎𝑎𝑎𝑎2𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐1,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐1 etc. but none of them have length less than 7.

> Time and memory limit: 1.5s / 128MB

44

Problem F: Compression

Problem F: Compression
A software company is making tools for data compression. One group of engineers is working on algorithms for
compression of really long textual data. Currently, they are implementing some variations of compression algorithm called
run-length encoding. Run-length encoding is a technique where consecutive runs (sequences) of same data are stored as
a run value and count. In this case specifically, algorithm takes a string 𝑆𝑆 as an input and compresses it into a new string
𝐶𝐶𝑠𝑠 using run-length encoding. 𝐶𝐶𝑠𝑠 is of the form

< 𝑟𝑟𝑟𝑟𝑟𝑟1 >< 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐1 >< 𝑟𝑟𝑟𝑟𝑟𝑟2 >< 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐2 > ⋯ < 𝑟𝑟𝑟𝑟𝑟𝑟𝑘𝑘 >< 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑘𝑘 >

where < 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 > is a non-empty string value and < 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 > is a positive integer value for each 𝑖𝑖 = 1. . 𝑘𝑘.
Decompressing 𝐶𝐶𝑠𝑠 back to 𝑆𝑆 works by repeating value of < 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 > exactly < 𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖 > times for each 𝑖𝑖 = 1. . 𝑘𝑘.
Obviously, 𝐶𝐶𝑠𝑠 may not be unique because it might be possible to split 𝑆𝑆 into runs in many different ways, so engineers are
experimenting with different approaches of splitting 𝑆𝑆 into runs. All of these approaches are optimized for compression
speed and low memory consumption of the algorithm, and not the compression efficiency, because in reality input data
can be several terabytes large and it is more important that compression is fast and does not take a lot of resources. To
measure compression efficiency, engineers will use smaller inputs and compare their approaches of splitting 𝑆𝑆 into runs to
the optimal way of splitting 𝑆𝑆 into runs – one that results in 𝐶𝐶𝑠𝑠 of minimum length. Help them by writing a program that
will calculate the minimum length of 𝐶𝐶𝑠𝑠.

Input:
The first line contains one integer 𝑁𝑁 – length of string 𝑆𝑆. The second line contains the string 𝑆𝑆.

Output:
Output contains one integer – minimum length of string 𝐶𝐶𝑠𝑠.

Constraints:
• 1 ≤ N ≤ 3,000

All letters of 𝑆𝑆 are lowercase letters of English alphabet

Example input: Example output:
12
aaaababababc

7

Example explanation:
Compressed string of the smallest length is 𝑎𝑎3𝑎𝑎𝑎𝑎4𝑐𝑐1. Some other possibilities for 𝐶𝐶𝑠𝑠 are 𝑎𝑎4𝑎𝑎𝑎𝑎3𝑎𝑎𝑐𝑐1, 𝑎𝑎𝑎𝑎2𝑎𝑎𝑎𝑎2𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐1,
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐1 etc. but none of them have length less than 7.

> Time and memory limit: 1.5s / 128MB

Problem F: Compression

Solution and analysis:
We will start by describing a dynamic programming part of the solution.
Let 𝐷𝐷𝐷𝐷[𝑖𝑖] represent the minimum compression length for the string 𝑆𝑆[1. . 𝑖𝑖] (substring of 𝑆𝑆 starting at the position 1 and
ending at the position 𝑖𝑖). The solution is then 𝐷𝐷𝐷𝐷[𝑁𝑁].
So, how do we calculate 𝐷𝐷𝐷𝐷[𝑖𝑖], for 𝑖𝑖 = 1. .𝑁𝑁? We initialize by setting 𝐷𝐷𝐷𝐷[0] = 0. When we are at the position 𝑖𝑖, we take any
substring of 𝑆𝑆 ending at the position 𝑖𝑖 as a run. There are exactly 𝑖𝑖 such substrings: 𝑆𝑆[𝑖𝑖. . 𝑖𝑖], 𝑆𝑆[𝑖𝑖 − 1. . 𝑖𝑖], 𝑆𝑆[𝑖𝑖 − 2. . 𝑖𝑖], … , 𝑆𝑆[1. . 𝑖𝑖].
For each run, we will try to repeat it 𝑘𝑘 times, where 𝑘𝑘 = 1. .𝑀𝑀, and 𝑀𝑀 is ⌊ 𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙)⌋.
Then, if the substring 𝑆𝑆[𝑖𝑖 − 𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙) + 1. . 𝑖𝑖] is equal to the substring 𝑆𝑆[𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙) + 1. . 𝑖𝑖] repeated exactly 𝑘𝑘
times, one possible value for 𝐷𝐷𝐷𝐷[𝑖𝑖] would be 𝐷𝐷𝐷𝐷[𝑖𝑖 − 𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙)] + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙) + 𝑙𝑙𝑟𝑟𝑛𝑛𝑛𝑛𝑙𝑙𝑟𝑟𝑜𝑜𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑘𝑘) . 𝐷𝐷𝐷𝐷[𝑖𝑖] obviously
takes a minimum of all such values.
We do not need to check the whole first substring – if the equality of substrings holds for 𝑘𝑘 − 1 and 𝑆𝑆[𝑖𝑖 − 𝑘𝑘 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙) +
1. . 𝑖𝑖 − (𝑘𝑘 − 1) ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙) + 1] is equal to the 𝑆𝑆[𝑖𝑖 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙) + 1. . 𝑖𝑖], then it holds for 𝑘𝑘 also. Actually, we can also see
that when we get to 𝑘𝑘 that doesn’t satisfy the equality, we can stop for this run, because the condition would not be satisfied
for any number larger than 𝑘𝑘 either.
Let’s take a string 𝑆𝑆 =′ 𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛′ as an example. For 𝑖𝑖 = 5, the runs can be ′𝑛𝑛′, 𝑎𝑎′ 𝑛𝑛′, 𝑛𝑛′ 𝑎𝑎𝑛𝑛′, 𝑎𝑎′ 𝑛𝑛𝑎𝑎𝑛𝑛′ and ‘𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛′. Taking ‘𝑛𝑛′ as
a run and 𝑘𝑘 = 1, we take 𝐷𝐷𝐷𝐷[4] + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(′𝑛𝑛′) + 𝑙𝑙𝑟𝑟𝑛𝑛𝑛𝑛𝑙𝑙𝑟𝑟𝑜𝑜𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1) as one possible value for 𝐷𝐷𝐷𝐷[5]. For 𝑘𝑘 = 2, we see that
substring 𝑆𝑆[4. .4] is not equal to ′𝑛𝑛′ so we can stop. For ′𝑎𝑎𝑛𝑛′, one possible value for 𝐷𝐷𝐷𝐷[5] is when 𝑘𝑘 = 1, and the value is
𝐷𝐷𝐷𝐷[3] + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(′𝑎𝑎𝑛𝑛′) + 𝑙𝑙𝑟𝑟𝑛𝑛𝑛𝑛𝑙𝑙𝑟𝑟𝑜𝑜𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(1) . When 𝑘𝑘 = 2, 𝑆𝑆[2. .3] = 𝑆𝑆[4. .5] so possible value for 𝐷𝐷𝐷𝐷[5] is 𝐷𝐷𝐷𝐷[1] +
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(′𝑎𝑎𝑛𝑛′) + 𝑙𝑙𝑟𝑟𝑛𝑛𝑛𝑛𝑙𝑙𝑟𝑟𝑜𝑜𝑓𝑓𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(2). We cannot try with 𝑘𝑘 = 3 because of length of 𝑆𝑆. Similarly, we can check runs ′𝑛𝑛𝑎𝑎𝑛𝑛′, 𝑎𝑎′ 𝑛𝑛𝑎𝑎𝑛𝑛′
and ′𝑎𝑎𝑎𝑎𝑛𝑛𝑎𝑎𝑛𝑛′, with 𝑘𝑘 only equal to 1, due to their length.
We haven’t mentioned the complexity of the algorithm yet, but so far we can see that this doesn’t seem efficient enough in
the worst case. We can speed this up by precomputing if the substring 𝑆𝑆[𝑖𝑖 − 𝑗𝑗. . 𝑖𝑖] = 𝑆𝑆[𝑖𝑖 + 1. . 𝑖𝑖 + 𝑗𝑗 + 1] for all possible values
of 𝑖𝑖 and 𝑗𝑗 and storing the results in a matrix of size 𝑂𝑂(𝑁𝑁2). This will help us improve the dynamic programming part of the
solution by avoiding checking if two substrings are equal character by character every time, and instead have a 𝑂𝑂(1) check.
We can precompute this in several ways, such as using hashing or trie data structure. When using hashing, we can compute
the hash values of all substrings in 𝑂𝑂(𝑁𝑁2), using rolling hash, as in Rabin-Karp algorithm.
Let’s see what the total complexity of the solution is. For each index 𝑖𝑖, we check all the runs ending at 𝑖𝑖. This has time
complexity 𝑂𝑂(𝑁𝑁2). Then, for each run, we try to repeat it 𝑘𝑘 number of times. In the worst case, where the characters of the
input string are all the same, we would need to try for each 𝑘𝑘 = 1. . ⌊ 𝑖𝑖

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙)⌋. For each 𝑘𝑘, we need to check if the substrings
are the same, and without any precomputation this has time complexity of 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ(𝑟𝑟𝑟𝑟𝑙𝑙)), so the total complexity of the
algorithm in that case would be 𝑂𝑂(𝑁𝑁3). However, with 𝑂𝑂(1) check, the total complexity is 𝑂𝑂(𝐻𝐻𝑁𝑁𝑁𝑁2), where 𝐻𝐻𝑁𝑁 is 𝑁𝑁𝑙𝑙ℎ
harmonic number, and 𝐻𝐻𝑁𝑁 = ∑ 1

𝑖𝑖
𝑁𝑁
𝑖𝑖=1 . Harmonic series grows very slowly, so for 𝑁𝑁 = 3000, 𝐻𝐻𝑁𝑁 ≤ 10. With the memory

complexity of 𝑂𝑂(𝑁𝑁2), this algorithm is efficient enough, given the constraints in this task.

45

Problem G: Sticks

Problem G: Sticks
You are given an array of 𝑁𝑁 sticks. First stick is at the position 1, second at the position 2, etc. Last one is at the position 𝑁𝑁.
You can pair two sticks if they are not paired already and there are exactly two sticks between them, either paired or
unpaired. When you pair two sticks, you move one to the position of other – you can choose which one you move. Only
the stick that is moved changes its position, all the other sticks remain at their previous position.
Given 𝑁𝑁, determine if it is possible to pair all the sticks and if it is, output the pairing process. If there are multiple
solutions, output any solution.

Input:
The first and only line contains one integer 𝑁𝑁 – number of sticks.

Output:
If it is not possible to pair all the sticks, output −1. If it is possible, output the pairing process, one pairing step per line.
Format of each step is “𝑎𝑎 𝑏𝑏” (without quotation marks), which means that the stick at the position 𝑎𝑎 is paired with the stick
at the position 𝑏𝑏 and that the stick at 𝑎𝑎 is moved to 𝑏𝑏 (1 ≤ 𝑎𝑎, 𝑏𝑏 ≤ 𝑁𝑁).

Constraints:
• 1 ≤ 𝑁𝑁 ≤ 50

Example input: Example output:
5

-1

Example explanation:
It is not possible to pair all the sticks. We can pair 4 sticks in different ways, but one stick would end up without a pair. One
way to pair 4 out of those 5 sticks would be

1 4
5 3

After the first step, stick at the position 1 is paired with the stick at the position 4 and moved to that position. Notice that
there are now two sticks between position 3 and 5. In the next step, stick at the position 5 is paired with the stick at the
position 3 and moved to that position. Stick at the position 2 is left without a pair.

> Time and memory limit: 0.1s / 16MB

46

Problem G: Sticks

Problem G: Sticks
You are given an array of 𝑁𝑁 sticks. First stick is at the position 1, second at the position 2, etc. Last one is at the position 𝑁𝑁.
You can pair two sticks if they are not paired already and there are exactly two sticks between them, either paired or
unpaired. When you pair two sticks, you move one to the position of other – you can choose which one you move. Only
the stick that is moved changes its position, all the other sticks remain at their previous position.
Given 𝑁𝑁, determine if it is possible to pair all the sticks and if it is, output the pairing process. If there are multiple
solutions, output any solution.

Input:
The first and only line contains one integer 𝑁𝑁 – number of sticks.

Output:
If it is not possible to pair all the sticks, output −1. If it is possible, output the pairing process, one pairing step per line.
Format of each step is “𝑎𝑎 𝑏𝑏” (without quotation marks), which means that the stick at the position 𝑎𝑎 is paired with the stick
at the position 𝑏𝑏 and that the stick at 𝑎𝑎 is moved to 𝑏𝑏 (1 ≤ 𝑎𝑎, 𝑏𝑏 ≤ 𝑁𝑁).

Constraints:
• 1 ≤ 𝑁𝑁 ≤ 50

Example input: Example output:
5

-1

Example explanation:
It is not possible to pair all the sticks. We can pair 4 sticks in different ways, but one stick would end up without a pair. One
way to pair 4 out of those 5 sticks would be

1 4
5 3

After the first step, stick at the position 1 is paired with the stick at the position 4 and moved to that position. Notice that
there are now two sticks between position 3 and 5. In the next step, stick at the position 5 is paired with the stick at the
position 3 and moved to that position. Stick at the position 2 is left without a pair.

> Time and memory limit: 0.1s / 16MB

Problem G: Sticks

Solution and analysis:
Let’s make a few observations first.
If 𝑁𝑁 is odd, it is obvious that there is no solution because at least one stick would end up without a pair.
If 𝑁𝑁 is even, we can reduce the problem to 𝑁𝑁 − 2 sticks by pairing the fourth and first stick and moving the fourth to the first
position. We are then left with two sticks less, with the two paired sticks being at the beginning of the array and having no
effect in the further pairing process. That means that if the pairing of all sticks is possible when 𝑁𝑁 equals some even number
𝐾𝐾, it is also possible when 𝑁𝑁 equals any even number larger than 𝐾𝐾. Now we just need to find minimum such number.
We can see that it is impossible to pair all the sticks when 𝑁𝑁 equals 2, 4 or 6 by manually trying all the possibilities (there
aren’t many of them). We can also try to solve the problem when 𝑁𝑁 = 8 manually. It is not hard to come up with the full
pairing process for 𝑁𝑁 = 8, so we can conclude that there is a solution when 𝑁𝑁 is even and 𝑁𝑁 ≥ 8.
One solution when 𝑁𝑁 = 8 is to first pair 5𝑡𝑡ℎ and 2𝑛𝑛𝑛𝑛 stick, moving 5𝑡𝑡ℎ to the 2𝑛𝑛𝑛𝑛 position. Then, we can pair 3𝑟𝑟𝑛𝑛 and 7𝑡𝑡ℎ stick,
moving the 3𝑟𝑟𝑛𝑛 to 7𝑡𝑡ℎ position, since there is exactly two unpaired sticks between them after the first step. Third step should
be pairing and moving the 8𝑡𝑡ℎ stick to the 6𝑡𝑡ℎ position (there is exactly one pair between them from the second step). Final
step is pairing the 1𝑠𝑠𝑡𝑡 and 4𝑡𝑡ℎ stick.
So, the final algorithm is to pair the first and the fourth unpaired stick from the beginning of the array in each step, by
moving the fourth unpaired stick to the position of the first, until we are left with exactly 8 unpaired sticks. Then those 8
sticks can be paired as previously described. All of this can be done in linear time, so the final algorithm has complexity
𝑂𝑂(𝑁𝑁).

47

Problem H: Vectors

Problem H: Vectors
A set of 𝑚𝑚 vectors {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑚𝑚} in ℝ𝑑𝑑 (the set of 𝑑𝑑-tuples of real numbers) is said to be linearly independent if the only
reals 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑚𝑚that satisfy 𝜆𝜆1𝑣𝑣1 + 𝜆𝜆2𝑣𝑣2 + ⋯+ 𝜆𝜆𝑚𝑚𝑣𝑣𝑚𝑚 = 0 are 𝜆𝜆1 = 𝜆𝜆2 = ⋯ = 𝜆𝜆𝑚𝑚 = 0. For example, in ℝ2 the set of
vectors {(1

0) , (0
1)} is linearly independent. However, {(1

0) , (0
1) , (1

1)} is not since 1 (1
0) + 1 (0

1) + (−1) (1
1) = (0

0).
In this task, you are given 𝑛𝑛 vectors in ℝ𝑑𝑑, and every vector has some weight. Your job is to find a linearly independent set
of vectors with maximal sum of weights.

Input:
The first line contains two integers 𝑑𝑑 and 𝑛𝑛. The next 𝑛𝑛 lines contain 𝑑𝑑 + 1 integers each, separated with one empty space
between any two integers. The first 𝑑𝑑 numbers in the line 𝑖𝑖 + 1 are coordinates of the 𝑖𝑖𝑡𝑡ℎ vector, and the last number is its
weight.

Output:
The output should consist a single integer: the sum of weights of vectors in your set.

Constraints:
• 1 ≤ d ≤ 200
• 1 ≤ n ≤ 500
• The coordinates of the vectors are integers in the range [-103, 103]
• The weights of the vectors are integers in the range [-106, 106]

Example input: Example output:
4 4
1 0 0 0 30
0 0 1 0 30
1 0 1 0 100
0 0 0 1 1

131

> Time and memory limit: 0.5s / 16MB

48

Problem H: Vectors

Problem H: Vectors
A set of 𝑚𝑚 vectors {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑚𝑚} in ℝ𝑑𝑑 (the set of 𝑑𝑑-tuples of real numbers) is said to be linearly independent if the only
reals 𝜆𝜆1, 𝜆𝜆2, … , 𝜆𝜆𝑚𝑚that satisfy 𝜆𝜆1𝑣𝑣1 + 𝜆𝜆2𝑣𝑣2 + ⋯+ 𝜆𝜆𝑚𝑚𝑣𝑣𝑚𝑚 = 0 are 𝜆𝜆1 = 𝜆𝜆2 = ⋯ = 𝜆𝜆𝑚𝑚 = 0. For example, in ℝ2 the set of
vectors {(1

0) , (0
1)} is linearly independent. However, {(1

0) , (0
1) , (1

1)} is not since 1 (1
0) + 1 (0

1) + (−1) (1
1) = (0

0).
In this task, you are given 𝑛𝑛 vectors in ℝ𝑑𝑑, and every vector has some weight. Your job is to find a linearly independent set
of vectors with maximal sum of weights.

Input:
The first line contains two integers 𝑑𝑑 and 𝑛𝑛. The next 𝑛𝑛 lines contain 𝑑𝑑 + 1 integers each, separated with one empty space
between any two integers. The first 𝑑𝑑 numbers in the line 𝑖𝑖 + 1 are coordinates of the 𝑖𝑖𝑡𝑡ℎ vector, and the last number is its
weight.

Output:
The output should consist a single integer: the sum of weights of vectors in your set.

Constraints:
• 1 ≤ d ≤ 200
• 1 ≤ n ≤ 500
• The coordinates of the vectors are integers in the range [-103, 103]
• The weights of the vectors are integers in the range [-106, 106]

Example input: Example output:
4 4
1 0 0 0 30
0 0 1 0 30
1 0 1 0 100
0 0 0 1 1

131

> Time and memory limit: 0.5s / 16MB

Problem H: Vectors

Solution and analysis:
We claim that the greedy algorithm works, i.e. that it suffices to sort the vectors, start with an empty set of vectors and then
at each step add the heaviest vector to the set if the set remains linearly independent.
Observe the following basic lemma from linear algebra.
Lemma 1. Suppose that vectors {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛} are linearly independent, and that {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛+1} are also linearly
independent. Then we can find some 𝑘𝑘 such that {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛, 𝑢𝑢𝑘𝑘} is also linearly independent.
We postpone the proof for later, the fact above should at least be intuitively obvious.
Proof that the greedy algorithm is correct. We prove by induction on 𝑠𝑠 ≥ 1 that the greedy algorithm produces a set of 𝑠𝑠
vectors of maximal weight. For 𝑠𝑠 = 1 this is clear, as we choose a non-zero vector of maximal weight.
Suppose now that 𝑠𝑠 ≥ 2 and that the statement holds for smaller values of 𝑠𝑠. Suppose however that the statement fails for 𝑠𝑠,
that is, the greedy algorithm finds {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑠𝑠}, but {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑠𝑠} has higher weight. Still, by induction hypothesis,
{𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑠𝑠−1} is optimal for 𝑠𝑠 − 1. This means that any subset of 𝑠𝑠 − 1 elements of {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑠𝑠} has weight at most that
of {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑠𝑠−1}, and in particular, 𝑣𝑣𝑠𝑠 has smaller weight than any 𝑢𝑢𝑖𝑖. By Lemma 1 applied to {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑠𝑠−1}
and{𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑠𝑠}, we have some 𝑘𝑘 such that {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑠𝑠−1,𝑢𝑢𝑘𝑘} is linearly independent, and 𝑢𝑢𝑘𝑘has higher weight than 𝑣𝑣𝑠𝑠, so
it would have been added to our set before 𝑣𝑣𝑠𝑠, which is contradiction. This finishes the proof that the algorithm works. □
Proof of Lemma 1. Suppose contrary, so every 𝑢𝑢𝑘𝑘 can be written is in the span 𝑉𝑉 of {𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛}. But {𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝑛𝑛+1} are
linearly independent in 𝑉𝑉 which contradicts Steinitz exchange lemma. (See
http://en.wikipedia.org/wiki/Steinitz_exchange_lemma). □
Finally, we may observe that a simple way to implement the algorithm above is to sort the vectors by weights and put them
as rows in a matrix in the sorted order. Then one pass of Gaussian elimination gives the solution, by picking the non-zero
rows. This gives an algorithm of time complexity 𝑂𝑂(𝑑𝑑𝑛𝑛2) and memory complexity 𝑂𝑂(𝑑𝑑𝑛𝑛).

49

Problem I: Queries on an array

Problem I: Queries on an array
You are given an array 𝑎𝑎 of 𝑁𝑁 elements. Array 𝑎𝑎 is 0-indexed. There are two types of queries that you should perform on
the array.

• 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 𝑗𝑗 𝑘𝑘: Invert the 𝑘𝑘𝑡𝑡ℎ bit on each element in the range [𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗]
• 𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖 𝑗𝑗: Output the sum of the elements in the range [𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗]

Note that 0𝑡𝑡ℎ bit is the least significant bit and 31𝑠𝑠𝑡𝑡 bit is the most significant bit.

Input:
The first line contains one integer 𝑁𝑁 – size of the array. Second line contains 𝑁𝑁 integers that are initial values of the elements
in the array. Third line contains one integer 𝑄𝑄 – number of the queries. Following 𝑄𝑄 lines contain one query per line.

Output:
Output contains 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 lines, where 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 represents the number of 𝑆𝑆𝑆𝑆𝑆𝑆 queries, and each line contains the answer to the
corresponding query.

Constraints:
• 1 ≤ N ≤ 100,000
• 1 ≤ Q ≤ 100,000
• 0 ≤ i ≤ j ≤ N-1
• 0 ≤ k ≤ 31

Elements of the array are 32 bit unsigned integers.
Example input: Example output:
4
1 2 3 1
5
SUM 0 2
INVERT 0 2 0
SUM 0 2
INVERT 3 3 10
SUM 3 3

6
5
1025

> Time and memory limit: 4s / 16MB

50

Problem I: Queries on an array

Problem I: Queries on an array
You are given an array 𝑎𝑎 of 𝑁𝑁 elements. Array 𝑎𝑎 is 0-indexed. There are two types of queries that you should perform on
the array.

• 𝐼𝐼𝑁𝑁𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑖𝑖 𝑗𝑗 𝑘𝑘: Invert the 𝑘𝑘𝑡𝑡ℎ bit on each element in the range [𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗]
• 𝑆𝑆𝑆𝑆𝑆𝑆 𝑖𝑖 𝑗𝑗: Output the sum of the elements in the range [𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑗𝑗]

Note that 0𝑡𝑡ℎ bit is the least significant bit and 31𝑠𝑠𝑡𝑡 bit is the most significant bit.

Input:
The first line contains one integer 𝑁𝑁 – size of the array. Second line contains 𝑁𝑁 integers that are initial values of the elements
in the array. Third line contains one integer 𝑄𝑄 – number of the queries. Following 𝑄𝑄 lines contain one query per line.

Output:
Output contains 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 lines, where 𝑄𝑄𝑠𝑠𝑠𝑠𝑠𝑠 represents the number of 𝑆𝑆𝑆𝑆𝑆𝑆 queries, and each line contains the answer to the
corresponding query.

Constraints:
• 1 ≤ N ≤ 100,000
• 1 ≤ Q ≤ 100,000
• 0 ≤ i ≤ j ≤ N-1
• 0 ≤ k ≤ 31

Elements of the array are 32 bit unsigned integers.
Example input: Example output:
4
1 2 3 1
5
SUM 0 2
INVERT 0 2 0
SUM 0 2
INVERT 3 3 10
SUM 3 3

6
5
1025

> Time and memory limit: 4s / 16MB

Problem I: Queries on an array

Solution and analysis:
Here we are faced with an interesting and relatively straightforward problem, assuming familiarity with the required data
structure. The obvious brute-force solution would involve manually updating each array element upon an inversion
command and performing the summing up in a similar fashion. This has a worst-case complexity of 𝑂𝑂(𝑁𝑁) per operation,
which is too slow for the given query time. Clearly, we need to utilize a more clever approach here.
A common pattern of thought when up against a problem involving dynamically updating an array and then querying over
its intervals is to try to get the complexity down to 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁); one of the most common data structures to consider for
achieving this is called a segment tree, which we can use for this problem as well. A segment tree is a binary tree
constructed over an array (a more general version is constructed over a set of points on the real number line) where each
node is “responsible” for a certain subinterval of the array – the root is responsible for the entire array, leaves are responsible
for each of the individual elements, while nodes in between are responsible for the union of the intervals held responsible by
their children – the figure below represents an example layout of the structure for an array of size 8, with the intervals noted
in each node:

The operations of updating and querying a single element are clearly of logarithmic time complexity, as they require
recursively descending down the tree, halving the interval being considered in each step. Querying over a range is also of
logarithmic cost – if we query by aggregating the values stored in the minimal set of nodes covering the entire range; the
proof that there will always be 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁) nodes in this minimal set is left as an exercise to the reader. Updating a range
requires us to be more clever; we can only update the minimal set of nodes covering the range – but as we might need to
propagate this to the nodes deeper in the tree, we use a technique called lazy propagation, where we store pending
updates in nodes and propagate them to their children whenever they are accessed.
To see how a segment tree could be used for solving this problem, let us consider an easier variant: assume we are only
dealing with 1-bit values (as in, all members of the array are lesser than 2). This problem can easily be solved by using a
segment tree, having each node store the sum of the array values in the interval it’s responsible for (i.e. each node’s value is
equal to the sum of the values of its children). Once we have a structure like this, querying for the sum of a range simply
involves summing over the nodes in the minimal set as discussed in the previous paragraph. Inversions are first performed by
“inverting” all the nodes in the minimal set, then propagating the operation to their children when necessary, and so on.
“Inverting” a node is simple: if a node is responsible for an interval of size 𝑙𝑙, and it had stored a sum of 𝑘𝑘 previously, then
after inverting that interval, the sum stored will become 𝑙𝑙 − 𝑘𝑘 (as all the 1s in the interval become 0s and vice versa). Hence,
we have successfully reached a logarithmic-time solution per operation for this version of the problem.

51

Problem I: Queries on an array

To expand this to 𝑑𝑑-bit values, we just need to construct 𝑑𝑑 segment trees of 1-bit values as outlined in the previous
paragraph, each responsible for an individual bit of the integers. An inversion operation involves updating the appropriate
segment tree (given to us in the problem with the input parameter 𝑘𝑘). When summing up, we can just add up all the powers
individually with separate summations on each segment tree:

𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑟𝑟) = ∑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠[𝑖𝑖]. 𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑟𝑟)
𝑑𝑑−1

𝑖𝑖=0
∗ 2𝑖𝑖

This gives us an overall time complexity of 𝑂𝑂(𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁) per invert operation and 𝑂𝑂(𝑑𝑑 𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁) per summation – overall the worst-
case time complexity of the algorithm (when only performing sum queries) of 𝑂𝑂(𝑄𝑄 ⋅ 𝑑𝑑 𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁) and the space complexity is
𝑂𝑂(𝑑𝑑𝑁𝑁). As in this version of the problem we have fixed 𝑑𝑑 = 32, we can ignore it from our analysis, giving us the required
𝑂𝑂(𝑄𝑄 𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁) behaviour.
Another thing to note is that the query result may overflow a 32-bit integer, and as such, using a 64-bit type (long long in
C++/Int64 in Pascal) is necessary to completely solve this problem.

Problem A: Fibonotci

bubble cup 8

52

Problem I: Queries on an array

To expand this to 𝑑𝑑-bit values, we just need to construct 𝑑𝑑 segment trees of 1-bit values as outlined in the previous
paragraph, each responsible for an individual bit of the integers. An inversion operation involves updating the appropriate
segment tree (given to us in the problem with the input parameter 𝑘𝑘). When summing up, we can just add up all the powers
individually with separate summations on each segment tree:

𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑟𝑟) = ∑𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠[𝑖𝑖]. 𝑆𝑆𝑆𝑆𝑆𝑆(𝑙𝑙, 𝑟𝑟)
𝑑𝑑−1

𝑖𝑖=0
∗ 2𝑖𝑖

This gives us an overall time complexity of 𝑂𝑂(𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁) per invert operation and 𝑂𝑂(𝑑𝑑 𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁) per summation – overall the worst-
case time complexity of the algorithm (when only performing sum queries) of 𝑂𝑂(𝑄𝑄 ⋅ 𝑑𝑑 𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁) and the space complexity is
𝑂𝑂(𝑑𝑑𝑁𝑁). As in this version of the problem we have fixed 𝑑𝑑 = 32, we can ignore it from our analysis, giving us the required
𝑂𝑂(𝑄𝑄 𝑙𝑙𝑙𝑙𝑠𝑠𝑁𝑁) behaviour.
Another thing to note is that the query result may overflow a 32-bit integer, and as such, using a 64-bit type (long long in
C++/Int64 in Pascal) is necessary to completely solve this problem.

Problem A: Fibonotci

bubble cup 8

Problem A: Fibonotci

Problem A: Fibonotci
Statement:
Fibonotci sequence is an integer recursive sequence defined by the recurrence relation

𝐹𝐹𝑛𝑛 = 𝑐𝑐𝑛𝑛−1 ∙ 𝐹𝐹𝑛𝑛−1 + 𝑐𝑐𝑛𝑛−2 ∙ 𝐹𝐹𝑛𝑛−2
with:

𝐹𝐹0 = 0, 𝐹𝐹1 = 1.

Sequence 𝑐𝑐 is infinite and almost cyclic sequence with a cycle of length 𝑁𝑁. A sequence 𝑠𝑠 is almost cyclic with a cycle of
length 𝑁𝑁 if 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, for 𝑖𝑖 ≥ 𝑁𝑁, except for a finite number of values 𝑠𝑠𝑖𝑖 , for which 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (𝑖𝑖 ≥ 𝑁𝑁).
Following is an example of an almost cyclic sequence with a cycle of length 4.

𝑠𝑠 = (5, 3, 8, 11, 5, 3, 7, 11, 5, 3, 8, 11, …)

Notice that the only value of 𝑠𝑠 for which the equality 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 4 does not hold is 𝑠𝑠6 (𝑠𝑠6 = 7 and 𝑠𝑠2 = 8).
You are given 𝑐𝑐0, 𝑐𝑐1, … , 𝑐𝑐𝑁𝑁−1 and all the values of sequence 𝑐𝑐 for which 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (𝑖𝑖 ≥ 𝑁𝑁).
Find 𝐹𝐹𝐾𝐾 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃.

Input:
The first line contains two numbers 𝐾𝐾 and 𝑃𝑃. The second line contains a single number 𝑁𝑁. The third line contains 𝑁𝑁
numbers separated by spaces, that represent the first 𝑁𝑁 numbers of the sequence 𝑐𝑐. The fourth line contains a single
number 𝑀𝑀, the number of values of sequence 𝑐𝑐 for which 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁. Each of the following 𝑀𝑀 lines contain two numbers
𝑗𝑗 and 𝑣𝑣, indicating that 𝑐𝑐𝑗𝑗 ≠ 𝑐𝑐𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 and 𝑐𝑐𝑗𝑗 = 𝑣𝑣.

Output:
Output should contain a single integer equal to 𝐹𝐹𝐾𝐾 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃.

Constraints:
• 1 ≤ N, M ≤ 50,000
• 0 ≤ K ≤ 1018
• 1 ≤ P ≤ 109
• 1 ≤ ci ≤ 109, for i = 0, 1, …, N - 1
• N ≤ j ≤ 1018
• 1 ≤ v ≤ 109
• All values are integers

54

Problem A: Fibonotci

Problem A: Fibonotci
Statement:
Fibonotci sequence is an integer recursive sequence defined by the recurrence relation

𝐹𝐹𝑛𝑛 = 𝑐𝑐𝑛𝑛−1 ∙ 𝐹𝐹𝑛𝑛−1 + 𝑐𝑐𝑛𝑛−2 ∙ 𝐹𝐹𝑛𝑛−2
with:

𝐹𝐹0 = 0, 𝐹𝐹1 = 1.

Sequence 𝑐𝑐 is infinite and almost cyclic sequence with a cycle of length 𝑁𝑁. A sequence 𝑠𝑠 is almost cyclic with a cycle of
length 𝑁𝑁 if 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, for 𝑖𝑖 ≥ 𝑁𝑁, except for a finite number of values 𝑠𝑠𝑖𝑖 , for which 𝑠𝑠𝑖𝑖 ≠ 𝑠𝑠𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (𝑖𝑖 ≥ 𝑁𝑁).
Following is an example of an almost cyclic sequence with a cycle of length 4.

𝑠𝑠 = (5, 3, 8, 11, 5, 3, 7, 11, 5, 3, 8, 11, …)

Notice that the only value of 𝑠𝑠 for which the equality 𝑠𝑠𝑖𝑖 = 𝑠𝑠𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 4 does not hold is 𝑠𝑠6 (𝑠𝑠6 = 7 and 𝑠𝑠2 = 8).
You are given 𝑐𝑐0, 𝑐𝑐1, … , 𝑐𝑐𝑁𝑁−1 and all the values of sequence 𝑐𝑐 for which 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 (𝑖𝑖 ≥ 𝑁𝑁).
Find 𝐹𝐹𝐾𝐾 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃.

Input:
The first line contains two numbers 𝐾𝐾 and 𝑃𝑃. The second line contains a single number 𝑁𝑁. The third line contains 𝑁𝑁
numbers separated by spaces, that represent the first 𝑁𝑁 numbers of the sequence 𝑐𝑐. The fourth line contains a single
number 𝑀𝑀, the number of values of sequence 𝑐𝑐 for which 𝑐𝑐𝑖𝑖 ≠ 𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁. Each of the following 𝑀𝑀 lines contain two numbers
𝑗𝑗 and 𝑣𝑣, indicating that 𝑐𝑐𝑗𝑗 ≠ 𝑐𝑐𝑗𝑗 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 and 𝑐𝑐𝑗𝑗 = 𝑣𝑣.

Output:
Output should contain a single integer equal to 𝐹𝐹𝐾𝐾 𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃.

Constraints:
• 1 ≤ N, M ≤ 50,000
• 0 ≤ K ≤ 1018
• 1 ≤ P ≤ 109
• 1 ≤ ci ≤ 109, for i = 0, 1, …, N - 1
• N ≤ j ≤ 1018
• 1 ≤ v ≤ 109
• All values are integers

Problem A: Fibonotci

Example input: Example output:
10 8
3
1 2 1
2
7 3
5 4

4

> Time and memory limit: 3s / 64MB

55

Problem A: Fibonotci

Solution and analysis:
Let’s first solve a simpler problem – when the sequence 𝑐𝑐 is cyclic, i. e. when 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, for 𝑖𝑖 ≥ 0.
This simpler version is similar to Fibonacci sequence. Actually, for 𝑁𝑁 = 1 and 𝑐𝑐0 = 1, it is the Fibonacci sequence. To find the
𝐾𝐾𝑡𝑡ℎ number of these kind of recursive sequences fast we should first write them in their matrix form.

Matrix form of this sequence is:

(𝐹𝐹𝑖𝑖
𝐹𝐹𝑖𝑖−1) = (𝑐𝑐𝑖𝑖−1 𝑐𝑐𝑖𝑖−2

1 0) (𝐹𝐹𝑖𝑖−1𝐹𝐹𝑖𝑖−2)

Expanding this, we can see that:

(𝐹𝐹𝐾𝐾
𝐹𝐹𝐾𝐾−1) = 𝐶𝐶𝐾𝐾−1𝐶𝐶𝐾𝐾−2 …𝐶𝐶2𝐶𝐶1 (

𝐹𝐹1
𝐹𝐹0), where 𝐶𝐶𝑖𝑖 = (𝑐𝑐𝑖𝑖 𝑐𝑐𝑖𝑖−1

1 0).

How do we calculate this efficiently?
For relatively small 𝐾𝐾, and we will take 𝐾𝐾 < 𝑁𝑁 for this case, we can do this just by multiplying all the matrices.
For large 𝐾𝐾 (𝐾𝐾 ≥ 𝑁𝑁), we will take advantage of the fact that 𝑐𝑐 is cyclic. Since 𝑐𝑐 is cyclic with cycle of length 𝑁𝑁, we know that
𝐶𝐶𝑁𝑁−1𝐶𝐶𝑁𝑁−2 …𝐶𝐶1𝐶𝐶0 = 𝐶𝐶𝑖𝑖𝑁𝑁+(𝑁𝑁−1)𝐶𝐶𝑖𝑖𝑁𝑁+(𝑁𝑁−2) …𝐶𝐶𝑖𝑖𝑁𝑁+1𝐶𝐶𝑖𝑖𝑁𝑁, for 𝑖𝑖 ≥ 0 (note that 𝐶𝐶0 = (𝑐𝑐0 𝑐𝑐𝑁𝑁−1

1 0)). Let’s define this product of matrices
as 𝑆𝑆 = 𝐶𝐶𝑁𝑁−1𝐶𝐶𝑁𝑁−2 …𝐶𝐶1𝐶𝐶0.

Now, we can write a formula for 𝐹𝐹𝐾𝐾 that can be calculated quickly:

(𝐹𝐹𝐾𝐾
𝐹𝐹𝐾𝐾−1) = 𝐶𝐶𝑎𝑎−1𝐶𝐶𝑎𝑎−2 …𝐶𝐶1𝐶𝐶0𝑆𝑆𝑏𝑏𝐶𝐶𝑁𝑁−1𝐶𝐶𝑁𝑁−2 …𝐶𝐶2𝐶𝐶1 (

𝐹𝐹1
𝐹𝐹0), where 𝑏𝑏 = (𝐾𝐾 − 𝑁𝑁)𝑑𝑑𝑖𝑖𝑑𝑑 𝑁𝑁 and 𝑎𝑎 = 𝐾𝐾 𝑚𝑚𝑚𝑚𝑑𝑑 𝑁𝑁.

We can calculate 𝑆𝑆𝑏𝑏 in 𝑂𝑂(𝑙𝑙𝑚𝑚𝑙𝑙𝑏𝑏) steps using exponentiation by squaring, and then we can just multiply everything in the
expression to get 𝐹𝐹𝐾𝐾 quickly.
Let’s get back to the full problem, when 𝑐𝑐 is almost cyclic. In this case, we cannot just use 𝑆𝑆𝑏𝑏 in the formula above, because
some matrices in 𝑆𝑆𝑏𝑏 may not respect the cyclic property. Instead of 𝑆𝑆𝑏𝑏, we will have something like

𝑆𝑆 ∙ 𝑆𝑆 ∙ … ∙ 𝑆𝑆 ∙ 𝐸𝐸1 ∙ 𝑆𝑆 ∙ 𝑆𝑆 ∙ … ∙ 𝑆𝑆 ∙ 𝐸𝐸2 ∙ … = 𝑆𝑆𝑡𝑡1 ∙ 𝐸𝐸1∙ ∙ 𝑆𝑆𝑡𝑡2 ∙ 𝐸𝐸2 ∙ 𝑆𝑆𝑡𝑡3 ∙ …

where 𝐸𝐸𝑖𝑖 denotes the product of matrices of the cycle, with some matrices being different than the matrices of the original
cycle. Also, 𝑖𝑖 ≤ 2𝑀𝑀 since each of the 𝑀𝑀 values of 𝑐𝑐 different than values of the original cycle appears in exactly two matrices,
so at most 2𝑀𝑀 of cycles are affected.
We can still calculate each 𝑆𝑆𝑡𝑡𝑖𝑖 quickly, using exponentiation by squaring. Since there are at most 2𝑀𝑀 of those, total
complexity of this would be 𝑂𝑂(𝑀𝑀𝑙𝑙𝑚𝑚𝑙𝑙𝐾𝐾).

56

Problem A: Fibonotci

Solution and analysis:
Let’s first solve a simpler problem – when the sequence 𝑐𝑐 is cyclic, i. e. when 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁, for 𝑖𝑖 ≥ 0.
This simpler version is similar to Fibonacci sequence. Actually, for 𝑁𝑁 = 1 and 𝑐𝑐0 = 1, it is the Fibonacci sequence. To find the
𝐾𝐾𝑡𝑡ℎ number of these kind of recursive sequences fast we should first write them in their matrix form.

Matrix form of this sequence is:

(𝐹𝐹𝑖𝑖
𝐹𝐹𝑖𝑖−1) = (𝑐𝑐𝑖𝑖−1 𝑐𝑐𝑖𝑖−2

1 0) (𝐹𝐹𝑖𝑖−1𝐹𝐹𝑖𝑖−2)

Expanding this, we can see that:

(𝐹𝐹𝐾𝐾
𝐹𝐹𝐾𝐾−1) = 𝐶𝐶𝐾𝐾−1𝐶𝐶𝐾𝐾−2 …𝐶𝐶2𝐶𝐶1 (

𝐹𝐹1
𝐹𝐹0), where 𝐶𝐶𝑖𝑖 = (𝑐𝑐𝑖𝑖 𝑐𝑐𝑖𝑖−1

1 0).

How do we calculate this efficiently?
For relatively small 𝐾𝐾, and we will take 𝐾𝐾 < 𝑁𝑁 for this case, we can do this just by multiplying all the matrices.
For large 𝐾𝐾 (𝐾𝐾 ≥ 𝑁𝑁), we will take advantage of the fact that 𝑐𝑐 is cyclic. Since 𝑐𝑐 is cyclic with cycle of length 𝑁𝑁, we know that
𝐶𝐶𝑁𝑁−1𝐶𝐶𝑁𝑁−2 …𝐶𝐶1𝐶𝐶0 = 𝐶𝐶𝑖𝑖𝑁𝑁+(𝑁𝑁−1)𝐶𝐶𝑖𝑖𝑁𝑁+(𝑁𝑁−2) …𝐶𝐶𝑖𝑖𝑁𝑁+1𝐶𝐶𝑖𝑖𝑁𝑁, for 𝑖𝑖 ≥ 0 (note that 𝐶𝐶0 = (𝑐𝑐0 𝑐𝑐𝑁𝑁−1

1 0)). Let’s define this product of matrices
as 𝑆𝑆 = 𝐶𝐶𝑁𝑁−1𝐶𝐶𝑁𝑁−2 …𝐶𝐶1𝐶𝐶0.

Now, we can write a formula for 𝐹𝐹𝐾𝐾 that can be calculated quickly:

(𝐹𝐹𝐾𝐾
𝐹𝐹𝐾𝐾−1) = 𝐶𝐶𝑎𝑎−1𝐶𝐶𝑎𝑎−2 …𝐶𝐶1𝐶𝐶0𝑆𝑆𝑏𝑏𝐶𝐶𝑁𝑁−1𝐶𝐶𝑁𝑁−2 …𝐶𝐶2𝐶𝐶1 (

𝐹𝐹1
𝐹𝐹0), where 𝑏𝑏 = (𝐾𝐾 − 𝑁𝑁)𝑑𝑑𝑖𝑖𝑑𝑑 𝑁𝑁 and 𝑎𝑎 = 𝐾𝐾 𝑚𝑚𝑚𝑚𝑑𝑑 𝑁𝑁.

We can calculate 𝑆𝑆𝑏𝑏 in 𝑂𝑂(𝑙𝑙𝑚𝑚𝑙𝑙𝑏𝑏) steps using exponentiation by squaring, and then we can just multiply everything in the
expression to get 𝐹𝐹𝐾𝐾 quickly.
Let’s get back to the full problem, when 𝑐𝑐 is almost cyclic. In this case, we cannot just use 𝑆𝑆𝑏𝑏 in the formula above, because
some matrices in 𝑆𝑆𝑏𝑏 may not respect the cyclic property. Instead of 𝑆𝑆𝑏𝑏, we will have something like

𝑆𝑆 ∙ 𝑆𝑆 ∙ … ∙ 𝑆𝑆 ∙ 𝐸𝐸1 ∙ 𝑆𝑆 ∙ 𝑆𝑆 ∙ … ∙ 𝑆𝑆 ∙ 𝐸𝐸2 ∙ … = 𝑆𝑆𝑡𝑡1 ∙ 𝐸𝐸1∙ ∙ 𝑆𝑆𝑡𝑡2 ∙ 𝐸𝐸2 ∙ 𝑆𝑆𝑡𝑡3 ∙ …

where 𝐸𝐸𝑖𝑖 denotes the product of matrices of the cycle, with some matrices being different than the matrices of the original
cycle. Also, 𝑖𝑖 ≤ 2𝑀𝑀 since each of the 𝑀𝑀 values of 𝑐𝑐 different than values of the original cycle appears in exactly two matrices,
so at most 2𝑀𝑀 of cycles are affected.
We can still calculate each 𝑆𝑆𝑡𝑡𝑖𝑖 quickly, using exponentiation by squaring. Since there are at most 2𝑀𝑀 of those, total
complexity of this would be 𝑂𝑂(𝑀𝑀𝑙𝑙𝑚𝑚𝑙𝑙𝐾𝐾).

Problem A: Fibonotci

Now, we only need to calculate each 𝐸𝐸𝑖𝑖 . Naive way would be to just multiply all matrices of 𝐸𝐸𝑖𝑖 . Since the number of matrices
is 𝑁𝑁, this would be 𝑂𝑂(𝑁𝑁 · 𝑀𝑀) worst case, which is too slow. To quickly calculate 𝐸𝐸𝑖𝑖 , we will initially create a segment tree of
matrices, with matrices of original cycle in the leaves. Internal nodes of the tree will represent the product of their children.
This means that the root will represent the product of all matrices in the cycle. To calculate 𝐸𝐸𝑖𝑖 , we will just update our
segment tree with those values that are different than the original values of the cycle. We will do this by updating
corresponding leaves of the tree, moving up to the root and updating the products in the internal nodes. After we’re done
updating the tree with all of the matrices that are different than matrices of the original cycle, we will just use the product in
the root of the tree. Finally, we will update the tree back with matrices of the original cycle in order to reuse the segment tree
for 𝐸𝐸𝑖𝑖+1.
Since there are 𝑂𝑂(𝑁𝑁) nodes in the segment tree, the complexity of updating is 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁). The total complexity is then
𝑂𝑂(𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁 + 𝑀𝑀𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀). We should also mention that the constant factor is not very small, since we operate on matrices and
not just integers.
Note that we need to find 𝐹𝐹𝐾𝐾 𝑚𝑚𝑙𝑙𝑚𝑚 𝑃𝑃 and 𝑃𝑃 may not even be a prime number. However, this does not affect us since we only
deal with operations of addition and multiplication throughout the whole procedure and we can just do them all modulo 𝑃𝑃.

57

Problem B: Bribes

Problem B: Bribes
Statement:
Ruritania is a country with a very badly maintained road network, which is not exactly good news for lorry drivers that
constantly have to do deliveries. In fact, when roads are maintained, they become one-way. It turns out that it is
sometimes impossible to get from one town to another in a legal way – however, we know that all towns are reachable,
though illegally!
Fortunately for us, the police tend to be very corrupt and they will allow a lorry driver to break the rules and drive in the
wrong direction provided they receive ‘a small gift’. There is one patrol car for every road and they will request 1000
Ruritanian dinars when a driver drives in the wrong direction. However, being greedy, every time a patrol car notices the
same driver breaking the rule, they will charge double the amount of money they requested the previous time on that
particular road.
Borna is a lorry driver that managed to figure out this bribing pattern. As part of his job, he has to make 𝐾𝐾 stops in some
towns all over Ruritania and he has to make these stops in a certain order. There are 𝑁𝑁 towns (enumerated from 1 to 𝑁𝑁) in
Ruritania and Borna’s initial location is the capital city i.e. town 1. He happens to know which ones out of the 𝑁𝑁 − 1 roads
in Ruritania are currently unidirectional, but he is unable to compute the least amount of money he needs to prepare for
bribing the police. Help Borna by providing him with an answer and you will be richly rewarded.

Input:
The first line contains 𝑁𝑁, the number of towns in Ruritania. The following 𝑁𝑁 − 1 lines contain information regarding
individual roads between towns. A road is represented by a tuple of integers (𝑎𝑎, 𝑏𝑏, 𝑥𝑥), which are separated with a single
whitespace character. The numbers 𝑎𝑎 and 𝑏𝑏 represent the cities connected by this particular road, and 𝑥𝑥 is either 0 or 1: 0
means that the road is bidirectional, 1 means that only the 𝑎𝑎 → 𝑏𝑏 direction is legal. The next line contains 𝐾𝐾, the number
of stops Borna has to make. The final line of input contains 𝐾𝐾 positive integers 𝑠𝑠1, … , 𝑠𝑠𝐾𝐾: the towns Borna has to visit.

Output:
The output should contain a single number: the least amount of thousands of Ruritanian dinars Borna should allocate for
bribes, modulo 109 + 7.

Constraints:
• 1 ≤ N ≤ 105
• 1 ≤ K ≤ 106
• 1 ≤ a, b ≤ N for all roads
• x ∈ {0, 1} for all roads
• 1 ≤ si ≤ N for all 1 ≤ i ≤ K

58

Problem B: Bribes

Problem B: Bribes
Statement:
Ruritania is a country with a very badly maintained road network, which is not exactly good news for lorry drivers that
constantly have to do deliveries. In fact, when roads are maintained, they become one-way. It turns out that it is
sometimes impossible to get from one town to another in a legal way – however, we know that all towns are reachable,
though illegally!
Fortunately for us, the police tend to be very corrupt and they will allow a lorry driver to break the rules and drive in the
wrong direction provided they receive ‘a small gift’. There is one patrol car for every road and they will request 1000
Ruritanian dinars when a driver drives in the wrong direction. However, being greedy, every time a patrol car notices the
same driver breaking the rule, they will charge double the amount of money they requested the previous time on that
particular road.
Borna is a lorry driver that managed to figure out this bribing pattern. As part of his job, he has to make 𝐾𝐾 stops in some
towns all over Ruritania and he has to make these stops in a certain order. There are 𝑁𝑁 towns (enumerated from 1 to 𝑁𝑁) in
Ruritania and Borna’s initial location is the capital city i.e. town 1. He happens to know which ones out of the 𝑁𝑁 − 1 roads
in Ruritania are currently unidirectional, but he is unable to compute the least amount of money he needs to prepare for
bribing the police. Help Borna by providing him with an answer and you will be richly rewarded.

Input:
The first line contains 𝑁𝑁, the number of towns in Ruritania. The following 𝑁𝑁 − 1 lines contain information regarding
individual roads between towns. A road is represented by a tuple of integers (𝑎𝑎, 𝑏𝑏, 𝑥𝑥), which are separated with a single
whitespace character. The numbers 𝑎𝑎 and 𝑏𝑏 represent the cities connected by this particular road, and 𝑥𝑥 is either 0 or 1: 0
means that the road is bidirectional, 1 means that only the 𝑎𝑎 → 𝑏𝑏 direction is legal. The next line contains 𝐾𝐾, the number
of stops Borna has to make. The final line of input contains 𝐾𝐾 positive integers 𝑠𝑠1, … , 𝑠𝑠𝐾𝐾: the towns Borna has to visit.

Output:
The output should contain a single number: the least amount of thousands of Ruritanian dinars Borna should allocate for
bribes, modulo 109 + 7.

Constraints:
• 1 ≤ N ≤ 105
• 1 ≤ K ≤ 106
• 1 ≤ a, b ≤ N for all roads
• x ∈ {0, 1} for all roads
• 1 ≤ si ≤ N for all 1 ≤ i ≤ K

Problem B: Bribes

Example input: Example output:
5
1 2 0
2 3 0
5 1 1
3 4 1
5
5 4 5 2 2

4

Explanation:
Borna first takes the route 1 → 5 and has to pay 1000 dinars. After that, he takes the route 5 → 1 → 2 → 3 → 4 and pays
nothing this time. However, when he has to return via 4 → 3 → 2 → 1 → 5, he needs to prepare 3000 (1000 + 2000) dinars.
Afterwards, getting to 2 via 5 → 1 → 2 will cost him nothing. Finally, he doesn't even have to leave town 2 to get to 2, so
there is no need to prepare any additional bribe money. Hence, he has to prepare 4000 dinars in total.

> Time and memory limit: 1.5s / 64MB

59

Problem B: Bribes

Solution and analysis:
Let us first provide a suitable interpretation of the task description. The country can obviously be modelled as an undirected
graph, where vertices are towns and edges are roads. We see that it is connected (the description mentions that every city is
reachable), but we also know that there are 𝑁𝑁 − 1 edges, where 𝑁𝑁 is the number of vertices. From this it follows that the
graph is, in fact, a tree. For the sake of simplicity, let us make this tree rooted at node 1.
Let us consider just an 𝑎𝑎 ⇝ 𝑏𝑏 transfer. From the previous assertion it follows that the cheapest path from 𝑎𝑎 to 𝑏𝑏 will always
be the shortest path from 𝑎𝑎 to 𝑏𝑏 – which is, in fact, the only path from 𝑎𝑎 to 𝑏𝑏 that does not have any repeated vertices.
Borna’s trip is thus uniquely defined by all of his stops. Getting from town 𝑎𝑎 to town 𝑏𝑏 requires that Borna first goes to the
lowest common ancestor (LCA) node of 𝑎𝑎 and 𝑏𝑏, and then descends to 𝑏𝑏 (note that the LCA can also be any of the nodes 𝑎𝑎
and 𝑏𝑏!).
Computing the LCA of two vertices is a well-known problem and may be solved in several different ways.
One possible approach is to use the equivalence between LCA and the range minimum query (RMQ) problem and then
compute the LCA of any two vertices in constant time.
Another one is based on heavy path decomposition. In any case, we need to be able to compute the LCA in 𝑂𝑂(1) time.
Let us now define the notion of a banned (directed) edge: a directed edge 𝑎𝑎 → 𝑏𝑏 is banned if it requires paying a bribe. If 𝑎𝑎 is
the parent of 𝑏𝑏 for a banned edge 𝑎𝑎 → 𝑏𝑏, then we call 𝑎𝑎 → 𝑏𝑏 a down-banned edge. Similarly, we may define up-banned
edges. If Borna traveled along a banned edge 𝑝𝑝 times, then he will have to prepare 1 + 2 + ⋯+ 2𝑝𝑝−1 = 2𝑝𝑝 − 1 thousands of
dinars for bribing the police. Hence we need to determine the number of times every edge was traversed. This depends on
whether the edge is down-banned or up-banned.
Before delving into these two cases, we need to compute the following three properties for every town 𝑥𝑥:

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: the number of times 𝑥𝑥 was the final stop in a path, this is equal to the number of occurrences of 𝑥𝑥 in the
array of stops;

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑢𝑢𝑝𝑝: the number of times 𝑥𝑥 was the highest stop in a path, this is equal to the number of times 𝑥𝑥 was the LCA of
two consecutive stops;

• 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑢𝑢𝑝𝑝: the number of times 𝑥𝑥 was the first stop in a path.
Now we consider the cases:

• If an edge 𝑎𝑎 → 𝑏𝑏 is up-banned, then the number of times it was traversed is equal to the number of times any vertex
in 𝑎𝑎’s subtree was an initial stop, minus the number of times any vertex in 𝑎𝑎’s subtree was the highest stop (i.e. sum
of all 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑢𝑢𝑝𝑝’s minus the sum of all 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑢𝑢𝑝𝑝‘s). We may compute these parameters for all vertices at once using just
one post-order tree traversal. Thus, we can compute the ‘bribe contributions’ of all up-banned edge in linear time.

• If an edge 𝑎𝑎 → 𝑏𝑏 is down-banned, then the number of times it was traversed is equal to the number of times any
vertex in 𝑏𝑏’s subtree was a final stop, minus the number of times any vertex in 𝑏𝑏’s subtree was the highest stop (i.e.
sum of all 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑’s minus the sum of all 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑢𝑢𝑝𝑝‘s). Similar to the previous case, we can compute the ‘bribe
contributions’ of all down-banned edges using only one post-order tree traversal.

• Hence, by first computing 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑢𝑢𝑝𝑝 and 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑢𝑢𝑝𝑝 for every vertex, and then traversing the tree, we are able to
compute the answer. The final complexity depends on the implementation of LCA. The asymptotically optimal
solution to this problem has 𝑂𝑂(𝑁𝑁 + 𝐾𝐾) time complexity, but even an 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑔𝑔𝑔𝑔𝑁𝑁 + 𝐾𝐾) approach is acceptable given
these constraints.

60

Problem B: Bribes

Solution and analysis:
Let us first provide a suitable interpretation of the task description. The country can obviously be modelled as an undirected
graph, where vertices are towns and edges are roads. We see that it is connected (the description mentions that every city is
reachable), but we also know that there are 𝑁𝑁 − 1 edges, where 𝑁𝑁 is the number of vertices. From this it follows that the
graph is, in fact, a tree. For the sake of simplicity, let us make this tree rooted at node 1.
Let us consider just an 𝑎𝑎 ⇝ 𝑏𝑏 transfer. From the previous assertion it follows that the cheapest path from 𝑎𝑎 to 𝑏𝑏 will always
be the shortest path from 𝑎𝑎 to 𝑏𝑏 – which is, in fact, the only path from 𝑎𝑎 to 𝑏𝑏 that does not have any repeated vertices.
Borna’s trip is thus uniquely defined by all of his stops. Getting from town 𝑎𝑎 to town 𝑏𝑏 requires that Borna first goes to the
lowest common ancestor (LCA) node of 𝑎𝑎 and 𝑏𝑏, and then descends to 𝑏𝑏 (note that the LCA can also be any of the nodes 𝑎𝑎
and 𝑏𝑏!).
Computing the LCA of two vertices is a well-known problem and may be solved in several different ways.
One possible approach is to use the equivalence between LCA and the range minimum query (RMQ) problem and then
compute the LCA of any two vertices in constant time.
Another one is based on heavy path decomposition. In any case, we need to be able to compute the LCA in 𝑂𝑂(1) time.
Let us now define the notion of a banned (directed) edge: a directed edge 𝑎𝑎 → 𝑏𝑏 is banned if it requires paying a bribe. If 𝑎𝑎 is
the parent of 𝑏𝑏 for a banned edge 𝑎𝑎 → 𝑏𝑏, then we call 𝑎𝑎 → 𝑏𝑏 a down-banned edge. Similarly, we may define up-banned
edges. If Borna traveled along a banned edge 𝑝𝑝 times, then he will have to prepare 1 + 2 + ⋯+ 2𝑝𝑝−1 = 2𝑝𝑝 − 1 thousands of
dinars for bribing the police. Hence we need to determine the number of times every edge was traversed. This depends on
whether the edge is down-banned or up-banned.
Before delving into these two cases, we need to compute the following three properties for every town 𝑥𝑥:

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑: the number of times 𝑥𝑥 was the final stop in a path, this is equal to the number of occurrences of 𝑥𝑥 in the
array of stops;

• 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑢𝑢𝑝𝑝: the number of times 𝑥𝑥 was the highest stop in a path, this is equal to the number of times 𝑥𝑥 was the LCA of
two consecutive stops;

• 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑢𝑢𝑝𝑝: the number of times 𝑥𝑥 was the first stop in a path.
Now we consider the cases:

• If an edge 𝑎𝑎 → 𝑏𝑏 is up-banned, then the number of times it was traversed is equal to the number of times any vertex
in 𝑎𝑎’s subtree was an initial stop, minus the number of times any vertex in 𝑎𝑎’s subtree was the highest stop (i.e. sum
of all 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑢𝑢𝑝𝑝’s minus the sum of all 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑢𝑢𝑝𝑝‘s). We may compute these parameters for all vertices at once using just
one post-order tree traversal. Thus, we can compute the ‘bribe contributions’ of all up-banned edge in linear time.

• If an edge 𝑎𝑎 → 𝑏𝑏 is down-banned, then the number of times it was traversed is equal to the number of times any
vertex in 𝑏𝑏’s subtree was a final stop, minus the number of times any vertex in 𝑏𝑏’s subtree was the highest stop (i.e.
sum of all 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑’s minus the sum of all 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑢𝑢𝑝𝑝‘s). Similar to the previous case, we can compute the ‘bribe
contributions’ of all down-banned edges using only one post-order tree traversal.

• Hence, by first computing 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑢𝑢𝑝𝑝 and 𝑔𝑔𝑔𝑔𝑒𝑒𝑒𝑒𝑢𝑢𝑝𝑝 for every vertex, and then traversing the tree, we are able to
compute the answer. The final complexity depends on the implementation of LCA. The asymptotically optimal
solution to this problem has 𝑂𝑂(𝑁𝑁 + 𝐾𝐾) time complexity, but even an 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑔𝑔𝑔𝑔𝑁𝑁 + 𝐾𝐾) approach is acceptable given
these constraints.

Problem C: Party

Problem C: Party
Statement:
People working in MDCS (Microsoft Development Center Serbia) like partying. They usually go to night clubs on Friday
and Saturday.
There are 𝑁𝑁 people working in MDCS and there are 𝑁𝑁 clubs in the city. Unfortunately, if there is more than one Microsoft
employee in night club, level of coolness goes infinitely high and party is over, so club owners will never let more than one
Microsoft employee enter their club in the same week (just to be sure).
You are organizing night life for Microsoft employees and you have statistics about how much every employee likes Friday
and Saturday parties for all clubs.
You need to match people with clubs maximizing overall sum of their happiness (they are happy as much as they like the
club), while half of people should go clubbing on Friday and the other half on Saturday.

Input:
The first line contains integer 𝑁𝑁 – number of employees in MDCS.
Then an 𝑁𝑁x𝑁𝑁 matrix follows, where element in 𝑖𝑖𝑡𝑡ℎ row and 𝑗𝑗𝑡𝑡ℎ column is an integer number that represents how much 𝑖𝑖𝑡𝑡ℎ
person likes 𝑗𝑗𝑡𝑡ℎ club’s Friday party.
Then another 𝑁𝑁x𝑁𝑁 matrix follows, where element in 𝑖𝑖𝑡𝑡ℎ row and 𝑗𝑗𝑡𝑡ℎ column is an integer number that represents how
much 𝑖𝑖𝑡𝑡ℎ person likes 𝑗𝑗𝑡𝑡ℎ club’s Saturday party.

Output:
Output should contain a single integer – maximum sum of happiness possible.

Constraints:
• 2 ≤ N ≤ 20
• N is even
• 0 ≤ level of likeness ≤106
• All values are integers

61

Problem C: Party

Example input: Example output:
4
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
5 8 7 1
6 9 81 3
55 78 1 6
1 1 1 1

167

Explanation:
Here is how we matched people with clubs:
Friday: 1𝑠𝑠𝑠𝑠 person with 4𝑠𝑠ℎ club (4 happiness) and 4𝑠𝑠ℎ person with 1𝑠𝑠𝑠𝑠 club (4 happiness).
Saturday: 2𝑛𝑛𝑛𝑛 person with 3𝑟𝑟𝑟𝑟 club (81 happiness) and 3𝑟𝑟𝑟𝑟 person with 2𝑛𝑛𝑟𝑟 club (78 happiness)
4 + 4 + 81 + 78 = 167

Time and memory limit: 1.5s / 6MB

62

Problem C: Party

Example input: Example output:
4
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
5 8 7 1
6 9 81 3
55 78 1 6
1 1 1 1

167

Explanation:
Here is how we matched people with clubs:
Friday: 1𝑠𝑠𝑠𝑠 person with 4𝑠𝑠ℎ club (4 happiness) and 4𝑠𝑠ℎ person with 1𝑠𝑠𝑠𝑠 club (4 happiness).
Saturday: 2𝑛𝑛𝑛𝑛 person with 3𝑟𝑟𝑟𝑟 club (81 happiness) and 3𝑟𝑟𝑟𝑟 person with 2𝑛𝑛𝑟𝑟 club (78 happiness)
4 + 4 + 81 + 78 = 167

Time and memory limit: 1.5s / 6MB

Problem C: Party

Solution and analysis:
This problem is a variation of the well-known assignment problem. More about the problem can be found on the Wikipedia
article - https://en.wikipedia.org/wiki/Assignment_problem.
First, notice that the memory limit is very low. This makes it almost impossible to write a dynamic programming solution. So,
let’s look at a different approach.
The most naïve solution would be going through (𝑁𝑁𝑁𝑁

2
) combinations of assignments – half of people on Friday and the other

half on Saturday. For every combination, we run Hungarian algorithm and find the best answer among all of the
combinations. Although the memory complexity of the algorithm is only 𝑂𝑂(𝑁𝑁2), the time complexity of this solution is

𝑂𝑂 ((𝑁𝑁𝑁𝑁
2
)𝑁𝑁3) , since Hungarian algorithm has 𝑂𝑂(𝑁𝑁3) time complexity.

This is too slow.

To explain the solution of this problem let’s describe the scheme of Hungarian algorithm:
HungarianAlgorithm(…)

{

 for(int i=0; i<n; i++)

 {

 hungarian_iteration();

 }

}

Hungarian algorithm allows rows of the assignment matrix to be added one by one, in 𝑂𝑂(𝑁𝑁2) time complexity each. To solve
our problem, we will recursively go through all sets of binary masks with equal number of 0𝑠𝑠 and 1𝑠𝑠, where 0 in 𝑖𝑖th position
means that the 𝑖𝑖th person would go partying on Friday, while 1 denotes a person going partying on Saturday. In each
recursive call, we will add a row to the solution for the binary mask we are currently generating. Time complexity of the

solution is 𝑂𝑂((𝑁𝑁𝑁𝑁
2
)𝑁𝑁2) , because the number of recursive calls is 𝑂𝑂 ((𝑁𝑁𝑁𝑁

2
)) . This is enough to solve the task within the

constraints.

Curiosity here is that the number of states we have to visit during our recursion is closely related to
problem H: Bots. You can find a detailed explanation in the analysis of that problem.

63

Problem D: Tablecity

Problem D: Tablecity
Statement:
There was a big bank robbery in Tablecity. In order to catch the thief, the President called none other than Albert –
Tablecity’s Chief of Police. Albert does not know where the thief is located, but he does know how he moves.
Tablecity can be represented as 1000 𝑥𝑥 2 grid, where every cell represents one district. Each district has its own unique
name “(𝑋𝑋,𝑌𝑌)”, where X and Y are the coordinates of the district in the grid. The thief’s movement is as follows:
Every hour the thief will leave the district (𝑋𝑋,𝑌𝑌) he is currently hiding in, and move to one of the districts: (𝑋𝑋 − 1,𝑌𝑌),
(𝑋𝑋 + 1,𝑌𝑌), (𝑋𝑋 − 1,𝑌𝑌 − 1), (𝑋𝑋 − 1,𝑌𝑌 + 1), (𝑋𝑋 + 1,𝑌𝑌 − 1), (𝑋𝑋 + 1,𝑌𝑌 + 1) as long as it exists in Tablecity.
Below is an example of thief’s possible movements if he is located in district (7, 1):

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2) (7, 2) (8, 2) (9, 2) …

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

(8, 1) (9, 1) …

Albert has enough people so that every hour he can pick any two districts in Tablecity and fully investigate them, making
sure that if the thief is located in one of them, he will get caught. Albert promised the President that the thief will be
caught in no more than 2015 hours and needs your help in order to achieve that.

Input:
There is no input for this problem.

Output:
The first line of output contains integer 𝑁𝑁 – duration of police search in hours. Each of the following 𝑁𝑁 lines contains
exactly 4 integers 𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1 𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2 separated by spaces, that represent 2 districts (𝑋𝑋𝑖𝑖1, 𝑌𝑌𝑖𝑖1) and (𝑋𝑋𝑖𝑖2, 𝑌𝑌𝑖𝑖2) which got
investigated during 𝑖𝑖𝑡𝑡ℎ hour. Output is given in chronological order (𝑖𝑖𝑡𝑡ℎ line contains districts investigated during 𝑖𝑖𝑡𝑡ℎ hour)
and should guarantee that the thief is caught in no more than 2015 hours, regardless of thief’s initial position and
movement.

Constraints:
• 1 ≤ N ≤ 2015
• 1 ≤ X ≤ 1000, 1 ≤ Y ≤ 2

64

Problem D: Tablecity

Problem D: Tablecity
Statement:
There was a big bank robbery in Tablecity. In order to catch the thief, the President called none other than Albert –
Tablecity’s Chief of Police. Albert does not know where the thief is located, but he does know how he moves.
Tablecity can be represented as 1000 𝑥𝑥 2 grid, where every cell represents one district. Each district has its own unique
name “(𝑋𝑋,𝑌𝑌)”, where X and Y are the coordinates of the district in the grid. The thief’s movement is as follows:
Every hour the thief will leave the district (𝑋𝑋,𝑌𝑌) he is currently hiding in, and move to one of the districts: (𝑋𝑋 − 1,𝑌𝑌),
(𝑋𝑋 + 1,𝑌𝑌), (𝑋𝑋 − 1,𝑌𝑌 − 1), (𝑋𝑋 − 1,𝑌𝑌 + 1), (𝑋𝑋 + 1,𝑌𝑌 − 1), (𝑋𝑋 + 1,𝑌𝑌 + 1) as long as it exists in Tablecity.
Below is an example of thief’s possible movements if he is located in district (7, 1):

(1, 2) (2, 2) (3, 2) (4, 2) (5, 2) (6, 2) (7, 2) (8, 2) (9, 2) …

(1, 1) (2, 1) (3, 1) (4, 1) (5, 1) (6, 1)

(8, 1) (9, 1) …

Albert has enough people so that every hour he can pick any two districts in Tablecity and fully investigate them, making
sure that if the thief is located in one of them, he will get caught. Albert promised the President that the thief will be
caught in no more than 2015 hours and needs your help in order to achieve that.

Input:
There is no input for this problem.

Output:
The first line of output contains integer 𝑁𝑁 – duration of police search in hours. Each of the following 𝑁𝑁 lines contains
exactly 4 integers 𝑋𝑋𝑖𝑖1 𝑌𝑌𝑖𝑖1 𝑋𝑋𝑖𝑖2 𝑌𝑌𝑖𝑖2 separated by spaces, that represent 2 districts (𝑋𝑋𝑖𝑖1, 𝑌𝑌𝑖𝑖1) and (𝑋𝑋𝑖𝑖2, 𝑌𝑌𝑖𝑖2) which got
investigated during 𝑖𝑖𝑡𝑡ℎ hour. Output is given in chronological order (𝑖𝑖𝑡𝑡ℎ line contains districts investigated during 𝑖𝑖𝑡𝑡ℎ hour)
and should guarantee that the thief is caught in no more than 2015 hours, regardless of thief’s initial position and
movement.

Constraints:
• 1 ≤ N ≤ 2015
• 1 ≤ X ≤ 1000, 1 ≤ Y ≤ 2

Problem D: Tablecity

Example input: Example output:
No example input 2

5 1 50 2
8 1 80 2

Explanation:
Example output is not guaranteed to catch the thief and is not correct. There exists a combination of an initial position
and a movement strategy such that the police will not catch the thief.
Consider the following initial position and thief’s movement:
In the first hour, the thief is located in district (1, 1). Police officers will search districts (5, 1) and (50, 2) and will not find
him.
At the start of the second hour, the thief moves to district (2, 2). Police officers will search districts (8, 1) and (80, 2) and
will not find him.
Since there is no further investigation by the police, the thief escaped!

> Time and memory limit: 0.1s / 64MB

65

Problem D: Tablecity

Solution and analysis:
Notice that parity of thief’s 𝑋𝑋 coordinate changes every time he moves.
Assume that at the beginning 𝑋𝑋 coordinate of thief’s position is odd, and check districts (1, 1) and (1, 2). The next day check
districts (2, 1) and (2, 2) and so on until 1000𝑡𝑡ℎ when you check districts (1000, 1) and (1000, 2). What is achieved this way
is that if starting parity was as assumed, thief could have never moved to district with 𝑋𝑋 coordinate 𝑖𝑖 on day 𝑖𝑖 + 1, hence he
couldn’t have jumped over the search party and would’ve been caught. If he wasn’t caught, his starting parity was different
than we assumed, so on 1001𝑠𝑠𝑡𝑡 day we search whatever (1 and 1001 are of the same parity, so we need to wait one day),
and then starting on 1002𝑛𝑛𝑛𝑛day we do the same sweep from (1, 1) and (1, 2) to (1000, 1) and (1000, 2) and guarantee to
catch him.
Shortest possible solution is by going from (2, 1) and (2, 2) to (1000, 1) and (1000, 2) twice in a row, a total of 1998 days,
which is correct in the same way. First sweep catches the thief if he started with even 𝑋𝑋 coordinate, and second sweep catches
the thief if he started with odd 𝑋𝑋 coordinate.

66

Problem D: Tablecity

Solution and analysis:
Notice that parity of thief’s 𝑋𝑋 coordinate changes every time he moves.
Assume that at the beginning 𝑋𝑋 coordinate of thief’s position is odd, and check districts (1, 1) and (1, 2). The next day check
districts (2, 1) and (2, 2) and so on until 1000𝑡𝑡ℎ when you check districts (1000, 1) and (1000, 2). What is achieved this way
is that if starting parity was as assumed, thief could have never moved to district with 𝑋𝑋 coordinate 𝑖𝑖 on day 𝑖𝑖 + 1, hence he
couldn’t have jumped over the search party and would’ve been caught. If he wasn’t caught, his starting parity was different
than we assumed, so on 1001𝑠𝑠𝑡𝑡 day we search whatever (1 and 1001 are of the same parity, so we need to wait one day),
and then starting on 1002𝑛𝑛𝑛𝑛day we do the same sweep from (1, 1) and (1, 2) to (1000, 1) and (1000, 2) and guarantee to
catch him.
Shortest possible solution is by going from (2, 1) and (2, 2) to (1000, 1) and (1000, 2) twice in a row, a total of 1998 days,
which is correct in the same way. First sweep catches the thief if he started with even 𝑋𝑋 coordinate, and second sweep catches
the thief if he started with odd 𝑋𝑋 coordinate.

Problem E: Spectator riots

Problem E: Spectator riots
Statement:
It’s riot time on football stadium Ramacana! Raging fans have entered the field and the police find themselves in a difficult
situation. The field can be represented as a square in the coordinate system defined by two diagonal vertices in (0, 0) and
(105, 105). The sides of that square are also considered to be inside the field, everything else is outside.
In the beginning, there are 𝑁𝑁 fans on the field. For each fan we are given his speed, an integer 𝑣𝑣𝑖𝑖 as well as his integer
coordinates (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖). A fan with those coordinates might move and after one second he might be at any point
(𝑥𝑥𝑖𝑖 + 𝑝𝑝, 𝑦𝑦𝑖𝑖 + 𝑞𝑞) where 0 ≤ |𝑝𝑝| + |𝑞𝑞| ≤ 𝑣𝑣𝑖𝑖 . 𝑝𝑝, 𝑞𝑞 are both integers.
Points that go outside of the square that represents the field are excluded and all others have equal probability of being
the location of that specific fan after one second.
Andrej, a young and promising police officer, has sent a flying drone to take a photo of the riot from above. The drone’s
camera works like this:
It selects three points with integer coordinates such that there is a chance of a fan appearing there after one second. They
must not be collinear, or the camera won’t work. It is guaranteed that not all of the initial positions of fans will be on the
same line.
Camera focuses those points and creates a circle that passes through those three points. A photo is taken after one
second (one second after the initial state).
Everything that is on the circle or inside it at the moment of taking the photo (one second after focusing the points) will
be on the photo.
Your goal is to select those three points so that the expected number of fans seen on the photo is maximized. If there are
more such selections, select those three points that give the circle with largest radius among them. If there are still more
suitable selections, any one of them will be accepted.

Input:
The first line contains the number of fans on the field, 𝑁𝑁. The next 𝑁𝑁 lines contain three integers: 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑣𝑣𝑖𝑖 . They are the x-
coordinate, y-coordinate and speed of fan 𝑖𝑖 at the beginning of the one second interval considered in the task.

Output:
You need to output the three points that camera needs to select. Print them in three lines, with every line containing the
x-coordinate, then y-coordinate, separated by a single space. The order of points does not matter.

Constraints:
• 3 ≤ N ≤ 105
• 0 ≤ xi, yi ≤ 105
• 0 ≤ vi ≤ 1,000
• All numbers will be integers

67

Problem E: Spectator riots

Example input: Example output:
3
1 1 1
1 1 1
1 2 1

3 1
2 2
1 2

Explanation:
The circle defined in output will catch all of the fans, no matter how they move during one second.

> Time and memory limit: 0.5s / 128MB

68

Problem E: Spectator riots

Example input: Example output:
3
1 1 1
1 1 1
1 2 1

3 1
2 2
1 2

Explanation:
The circle defined in output will catch all of the fans, no matter how they move during one second.

> Time and memory limit: 0.5s / 128MB

Problem E: Spectator riots

Solution and analysis:
First, we simplify the problem by replacing the initial set of points with the set of all points where some fan might appear
after one second, call that set 𝑆𝑆. Every point in 𝑆𝑆 has a probability that a specific player will appear there. Consequently, for
every point 𝑃𝑃 in 𝑆𝑆 we know the expected number of fans at it after one second, call it 𝑃𝑃𝑒𝑒 .
Now, for some arbitrary circle that passes through some three points of 𝑆𝑆 (which doesn’t violate the rules of the problem), the
expected number of fans caught on camera is the sum of all 𝑇𝑇𝑒𝑒, where 𝑇𝑇 is a point on or inside the circle. Our goal is to find a
circle that maximizes that sum.
After drawing a few examples, we can notice that we can always catch most of the points that are possible locations of some
fan or even all of them. We can write a brute-force solution that will increase our suspicion that all fans can be caught, no
matter how they move.
Now let’s try to find the largest circle of those that surely catch all fans and don’t violate the rules in the problem. It is easy to
see that three fixed points that determine the circle must lie on the convex hull of 𝑆𝑆 (otherwise we surely wouldn’t catch all
points of 𝑆𝑆 with that circle).
Convex hull can be computed in |𝑆𝑆| 𝑙𝑙𝑙𝑙𝑙𝑙(|𝑆𝑆|) which might be too slow if unnecessary points are not eliminated from 𝑆𝑆.
Notice that for every fan in input, if his speed is v, he might appear at 𝑂𝑂(𝑣𝑣2) points, so convex hull algorithm would have
𝑂𝑂(𝑁𝑁 · 𝑣𝑣2 · 𝑙𝑙𝑙𝑙𝑙𝑙(𝑁𝑁 · 𝑣𝑣)) complexity, which is too slow.
The trick is to take only convex hull of those 𝑂𝑂(𝑣𝑣2) points, which will have 𝑂𝑂(1) points. All other points should be eliminated
from 𝑆𝑆 as they don’t have a chance of appearing on convex hull of 𝑆𝑆. Contestants need to be careful with edge cases when a
fan potentially goes out of the field.
After computing the convex hull of 𝑆𝑆 (call it 𝐻𝐻(𝑆𝑆)), we hope to find the circle that will pass through some three points on
that hull and contain all other points inside it or on it.
These two claims can be proven geometrically:

1. For a convex polygon, the largest circle among all circumcircles of triangles determined by the polygon vertices will
surely contain all vertices of the polygon on it or inside it.

2. For a convex polygon, the largest circumcircle of some triangle that is determined by vertices of the polygon is a
circumcircle of a triangle that contains three consecutive vertices of a polygon.

With 1) and 2) we conclude:
The largest circle among those that are circumscribed around triangles that are composed of three consecutive vertices of
𝐻𝐻(𝑆𝑆) contains all of the points of 𝐻𝐻(𝑆𝑆) (and then obviously of 𝑆𝑆) and no other circle that contains all those points can be
larger.
This means that we can finish the problem easily in linear time (with respect to the size of convex hull).

69

Problem F: Bulbo

Problem F: Bulbo
Statement:
Bananistan is a beautiful banana republic. Beautiful women in beautiful dresses. Beautiful statues of beautiful warlords.
Beautiful stars in beautiful nights.
In Bananistan people play this crazy game – Bulbo. There’s an array of bulbs and each player has a position, which
represents one of the bulbs. Distance between two neighboring bulbs is 1. Each turn one contiguous set of bulbs lights-
up, and players have the cost that’s equal to the distance from the closest shining bulb. Then all bulbs go dark again.
Before each turn players can change their position with |𝑝𝑝𝑝𝑝𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜| cost, and players know three next light-ups. The
goal is to minimize your summed cost. I tell you, Bananistanians are spending their nights playing with bulbs.
Banana day is approaching, and you are hired to play the most beautiful Bulbo game ever. A huge array of bulbs is
installed, and you know your initial position and all the light-ups in advance. You need to play the ideal game and impress
Bananistanians, and their families.

Input:
The first line contains number of turns 𝑛𝑛 and initial
position 𝑥𝑥. Next 𝑛𝑛 lines contain two numbers 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and
𝑙𝑙𝑛𝑛𝑛𝑛𝑜𝑜, which represent that all that bulbs from [𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑙𝑙𝑛𝑛𝑛𝑛𝑜𝑜]
interval are shining this turn.

Output:
Output should contain a single number which represents
the best result (minimum cost) that could be obtained
by playing this Bulbo game.

Constraints:
• 1 ≤ n ≤ 5,000
• 1 ≤ x ≤ 109
• 1 ≤ lstart ≤ lend ≤109

Example input: Example output:
5 4
2 7
9 16
8 10
9 17
1 6

8

Example-play:
Before 1. turn move to position 5
Before 2. turn move to position 9
Before 5. turn move to position 8

> Time and memory limit: 1s / 64MB

70

Problem F: Bulbo

Problem F: Bulbo
Statement:
Bananistan is a beautiful banana republic. Beautiful women in beautiful dresses. Beautiful statues of beautiful warlords.
Beautiful stars in beautiful nights.
In Bananistan people play this crazy game – Bulbo. There’s an array of bulbs and each player has a position, which
represents one of the bulbs. Distance between two neighboring bulbs is 1. Each turn one contiguous set of bulbs lights-
up, and players have the cost that’s equal to the distance from the closest shining bulb. Then all bulbs go dark again.
Before each turn players can change their position with |𝑝𝑝𝑝𝑝𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑝𝑝𝑠𝑠𝑜𝑜𝑜𝑜𝑜𝑜| cost, and players know three next light-ups. The
goal is to minimize your summed cost. I tell you, Bananistanians are spending their nights playing with bulbs.
Banana day is approaching, and you are hired to play the most beautiful Bulbo game ever. A huge array of bulbs is
installed, and you know your initial position and all the light-ups in advance. You need to play the ideal game and impress
Bananistanians, and their families.

Input:
The first line contains number of turns 𝑛𝑛 and initial
position 𝑥𝑥. Next 𝑛𝑛 lines contain two numbers 𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and
𝑙𝑙𝑛𝑛𝑛𝑛𝑜𝑜, which represent that all that bulbs from [𝑙𝑙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , 𝑙𝑙𝑛𝑛𝑛𝑛𝑜𝑜]
interval are shining this turn.

Output:
Output should contain a single number which represents
the best result (minimum cost) that could be obtained
by playing this Bulbo game.

Constraints:
• 1 ≤ n ≤ 5,000
• 1 ≤ x ≤ 109
• 1 ≤ lstart ≤ lend ≤109

Example input: Example output:
5 4
2 7
9 16
8 10
9 17
1 6

8

Example-play:
Before 1. turn move to position 5
Before 2. turn move to position 9
Before 5. turn move to position 8

> Time and memory limit: 1s / 64MB

Problem F: Bulbo

Solution and analysis:
Let’s start by creating a solution in 𝑂𝑂(𝑛𝑛 · 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) complexity. It’s a simple dynamic programming approach.
We have an array 𝑑𝑑𝑑𝑑𝑛𝑛 (size 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), which should say how costly would it be to be in this position at the end of the turn. At
initialization step each position is set to 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (some big number), except the initial position which is set to be 0. This
should represent that in the initial moment it’s impossible to be anywhere except in the initial position.
Before each turn we can change position, so before each turn we could calculate the best cost of being in that position when
the bulbs light up. We can do this by passing this array twice – once from the left and once from the right. Consider the case
we’re passing from left to right (smaller index 𝑖𝑖 to larger index 𝑖𝑖, the other case could be explained in the similar fashion).
While passing, we can keep the 𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚, which would be initiated to 𝑑𝑑𝑑𝑑𝑛𝑛[0], and updated as 𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑚𝑚𝑖𝑖𝑛𝑛(𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 + 1,𝑑𝑑𝑑𝑑𝑛𝑛[𝑖𝑖]), 𝑑𝑑𝑑𝑑𝑛𝑛[𝑖𝑖] = 𝑏𝑏𝑚𝑚𝑏𝑏𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 for each 𝑖𝑖 > 0. Rationale: if we came from the 𝑖𝑖 − 1 position we have the same
cost of that position +1, if we didn’t we have the same cost we had before this exercise. Now we only need to add distance to
the closest bulb for each position and we finished this turn. When we finish each turn we pick the lowest value in the array,
and that’s our solution. Simple enough.

But this solution is too slow for us. We want more.
Statement: We never have to move to the position which is not beginning or the end position of one of the light-ups.
Let’s consider following situation: We’re at the position 𝑚𝑚. If 𝑚𝑚 is going to be inside of the next turn shining bulbs, there’s no
point of moving at all (it would be the same as moving after the turn). So, consider 𝑚𝑚 is outside those bulbs, and 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the
closest bulb to 𝑚𝑚 that will be lighten-up. Also, consider 𝑚𝑚 < 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (the other case could be explained in the similar fashion).
Consider all the remaining light-up points (light-up beginning and end positions) are in the array 𝑝𝑝𝑝𝑝𝑏𝑏, which is sorted. Take a
look at the following picture:

First thing we could notice is the fact that our cost for this turn is going to be 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑚𝑚, if we finish the turn anywhere
between 𝑚𝑚 and 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 inclusive. Going left from 𝑚𝑚 or right from 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 doesn’t make any sense, because we would have
same or bigger cost than staying in 𝑚𝑚 or 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and moving from it in the next turn.

𝑚𝑚 𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑝𝑝𝑝𝑝𝑏𝑏′

𝑝𝑝𝑝𝑝𝑏𝑏′′

𝑚𝑚𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡

71

Problem F: Bulbo

Next, let’s consider we haven’t ended our turn on some light-up endpoint, but between two neighboring endpoints, 𝑝𝑝𝑝𝑝𝑝𝑝′ and
𝑝𝑝𝑝𝑝𝑝𝑝′′. Let’s call that position 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. Let’s also introduce 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2, which is the closest bulb from the 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in the next turn light-
up.
If 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is shining, then 𝑝𝑝𝑝𝑝𝑝𝑝′ is shining as well, so we could have finished our turn there. If 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝′ we would be better
off or equally well if we finished our turn in 𝑝𝑝𝑝𝑝𝑝𝑝′. In that case we would have 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑝𝑝′ smaller cost for the next turn. If
afterwards we need to go to 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, total cost would not exceed the cost of going straight to 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in the initial turn. If
𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2 ≥ 𝑝𝑝𝑝𝑝𝑝𝑝′′ we would be better off or equally well if we finished our turn in 𝑝𝑝𝑝𝑝𝑝𝑝′′, similar to the explanation for 𝑝𝑝𝑝𝑝𝑝𝑝′. So,
in each turn we could stay in the place or go to the closest light-up endpoint and we could still get the optimal solution.
We can use this fact to make a 𝑂𝑂(𝑛𝑛2) solution – instead of each position we should take consider only light-up endpoints and
initial position. Everything else is the same as in original solution.
Dynamic programming solution is enough to pass within the constraints for the program, but this problem can be solved in
linear time as well.
Let’s look at the values of array 𝑑𝑑𝑑𝑑𝑛𝑛. We can notice that this array actually has only one local minimum at each turn. What
this means is that we have a range [𝑙𝑙, 𝑟𝑟] and that all of the values from 𝑑𝑑𝑑𝑑𝑛𝑛[0] to 𝑑𝑑𝑑𝑑𝑛𝑛[𝑙𝑙] are monotonically decreasing, all
values from 𝑑𝑑𝑑𝑑𝑛𝑛[𝑟𝑟] to 𝑑𝑑𝑑𝑑𝑛𝑛[109] are monotonically increasing, while all of the values 𝑑𝑑𝑑𝑑𝑛𝑛[𝑙𝑙],𝑑𝑑𝑑𝑑𝑛𝑛[𝑙𝑙 + 1], … ,𝑑𝑑𝑑𝑑𝑛𝑛[𝑟𝑟] have the
same value and represent the minimum summed cost until this turn. We can use this property to create a linear time
algorithm.
Our linear algorithm will be as follows:
At the beginning, our optimal range will be [𝑥𝑥𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑥𝑥𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] and minimum cost will be 0. At each turn, we will update this
optimal range and minimum cost.
If the range of shining bulbs in the next turn intersects with our optimal range, we can easily see that our new optimal range
will be this intersection. The minimum cost will stay the same as cost for previous turn, since we don’t need to move if we are
located somewhere in this intersection, as we will already be located at a bulb that is shining. Anywhere outside of this
intersection, the cost would increase since either the distance to the closest shining bulb would be larger than 0, or because
of moving from our optimal range to somewhere outside of it, or both.
If the range of shining bulbs in the next turn does not intersect our optimal range and is left from our it, we will set that our
optimal range is from the rightmost shining bulb to the left end of our previously optimal range. Our minimum cost will
increase for exactly the distance between these positions – if we don’t move from the left end of our previously optimal range,
our cost increases for this distance. If we move from the left end of our previously optimal range by one position to left, we
decrease our distance in the next turn by 1, but increase the cost by 1 because of the move. Same goes for moving two
positions to left, and so on until movement to the rightmost shining bulb in the next turn (at which point our distance to
shining bulb will be 0, but our cost for moving will be the same as distance when we didn’t move at all). It is easily seen that
the minimum cost for a position that is left from this new optimal range is larger by 1, and the minimum cost for a position
that is right from this new optimal range is also larger by 1.
Moving further to the left or right, this cost increases more and more, resulting in only one local minimum as we described
previously.
If the range of shining bulbs does not intersect our optimal range and is right from it, we can do a similar thing as we do
when the range is left from our optimal range.
After all the turns, we have our optimal range and the minimum cost possible. The total complexity is 𝑂𝑂(𝑛𝑛), since in each
turn we update the range in 𝑂𝑂(1).

72

Problem F: Bulbo

Next, let’s consider we haven’t ended our turn on some light-up endpoint, but between two neighboring endpoints, 𝑝𝑝𝑝𝑝𝑝𝑝′ and
𝑝𝑝𝑝𝑝𝑝𝑝′′. Let’s call that position 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. Let’s also introduce 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2, which is the closest bulb from the 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in the next turn light-
up.
If 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is shining, then 𝑝𝑝𝑝𝑝𝑝𝑝′ is shining as well, so we could have finished our turn there. If 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2 ≤ 𝑝𝑝𝑝𝑝𝑝𝑝′ we would be better
off or equally well if we finished our turn in 𝑝𝑝𝑝𝑝𝑝𝑝′. In that case we would have 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑝𝑝𝑝𝑝𝑝𝑝′ smaller cost for the next turn. If
afterwards we need to go to 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, total cost would not exceed the cost of going straight to 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in the initial turn. If
𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡2 ≥ 𝑝𝑝𝑝𝑝𝑝𝑝′′ we would be better off or equally well if we finished our turn in 𝑝𝑝𝑝𝑝𝑝𝑝′′, similar to the explanation for 𝑝𝑝𝑝𝑝𝑝𝑝′. So,
in each turn we could stay in the place or go to the closest light-up endpoint and we could still get the optimal solution.
We can use this fact to make a 𝑂𝑂(𝑛𝑛2) solution – instead of each position we should take consider only light-up endpoints and
initial position. Everything else is the same as in original solution.
Dynamic programming solution is enough to pass within the constraints for the program, but this problem can be solved in
linear time as well.
Let’s look at the values of array 𝑑𝑑𝑑𝑑𝑛𝑛. We can notice that this array actually has only one local minimum at each turn. What
this means is that we have a range [𝑙𝑙, 𝑟𝑟] and that all of the values from 𝑑𝑑𝑑𝑑𝑛𝑛[0] to 𝑑𝑑𝑑𝑑𝑛𝑛[𝑙𝑙] are monotonically decreasing, all
values from 𝑑𝑑𝑑𝑑𝑛𝑛[𝑟𝑟] to 𝑑𝑑𝑑𝑑𝑛𝑛[109] are monotonically increasing, while all of the values 𝑑𝑑𝑑𝑑𝑛𝑛[𝑙𝑙],𝑑𝑑𝑑𝑑𝑛𝑛[𝑙𝑙 + 1], … ,𝑑𝑑𝑑𝑑𝑛𝑛[𝑟𝑟] have the
same value and represent the minimum summed cost until this turn. We can use this property to create a linear time
algorithm.
Our linear algorithm will be as follows:
At the beginning, our optimal range will be [𝑥𝑥𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑥𝑥𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] and minimum cost will be 0. At each turn, we will update this
optimal range and minimum cost.
If the range of shining bulbs in the next turn intersects with our optimal range, we can easily see that our new optimal range
will be this intersection. The minimum cost will stay the same as cost for previous turn, since we don’t need to move if we are
located somewhere in this intersection, as we will already be located at a bulb that is shining. Anywhere outside of this
intersection, the cost would increase since either the distance to the closest shining bulb would be larger than 0, or because
of moving from our optimal range to somewhere outside of it, or both.
If the range of shining bulbs in the next turn does not intersect our optimal range and is left from our it, we will set that our
optimal range is from the rightmost shining bulb to the left end of our previously optimal range. Our minimum cost will
increase for exactly the distance between these positions – if we don’t move from the left end of our previously optimal range,
our cost increases for this distance. If we move from the left end of our previously optimal range by one position to left, we
decrease our distance in the next turn by 1, but increase the cost by 1 because of the move. Same goes for moving two
positions to left, and so on until movement to the rightmost shining bulb in the next turn (at which point our distance to
shining bulb will be 0, but our cost for moving will be the same as distance when we didn’t move at all). It is easily seen that
the minimum cost for a position that is left from this new optimal range is larger by 1, and the minimum cost for a position
that is right from this new optimal range is also larger by 1.
Moving further to the left or right, this cost increases more and more, resulting in only one local minimum as we described
previously.
If the range of shining bulbs does not intersect our optimal range and is right from it, we can do a similar thing as we do
when the range is left from our optimal range.
After all the turns, we have our optimal range and the minimum cost possible. The total complexity is 𝑂𝑂(𝑛𝑛), since in each
turn we update the range in 𝑂𝑂(1).

Problem G: Run for beer

Problem G: Run for beer
Statement:
People in BubbleLand like to drink beer. Little do you know, beer here is so good and strong that every time you drink it
your speed goes 10 times slower than before you drank it.
Birko lives in city Beergrade, but wants to go to city Beerburg. You are given a road map of BubbleLand and you need to
find the fastest way for him. When he starts his journey in Beergrade his speed is 1. When he comes to a new city he
always tries a glass of local beer, which divides his speed by 10.
The question here is what the minimal time for him to reach Beerburg is. If there are several paths with the same minimal
time, pick the one that has least roads on it. If there is still more than one path, pick any.
It is guaranteed that there will be at least one path from Beergrade to Beerburg.

Input:
The first line of input contains integer 𝑁𝑁 – number of cities in Bubbleland and integer 𝑀𝑀 – number of roads in this country.
Cities are enumerated from 0 to 𝑁𝑁 − 1, with city 0 being Beergrade, and city 𝑁𝑁 − 1 being Beerburg.

Each of the following 𝑀𝑀 lines contain three integers 𝑎𝑎, 𝑏𝑏 (𝑎𝑎 ≠ 𝑏𝑏) and 𝑙𝑙𝑙𝑙𝑙𝑙. These numbers indicate that there is a
bidirectional road between cities 𝑎𝑎 and 𝑏𝑏 with length 𝑙𝑙𝑙𝑙𝑙𝑙.

Output:
The first line of output should contain minimal time needed to go from Beergrade to Beerburg.
The second line of the output should contain the number of cities on the path from Beergrade to Beerburg that takes
minimal time.
The third line of output should contain the numbers of cities on this path in the order they are visited, separated by
spaces.

Constraints:
• 2 ≤ N ≤ 105
• 1 ≤ M ≤ 105
• 0 ≤ len ≤ 9
• There is at most one road between two cities

73

Problem G: Run for beer

Example input: Example output:
8 10
0 1 1
1 2 5
2 7 6
0 3 2
3 7 3
0 4 0
4 5 0
5 7 2
0 6 0
6 7 7

32
3
0 3 7

> Time and memory limit: 0.5s / 64MB

74

Problem G: Run for beer

Example input: Example output:
8 10
0 1 1
1 2 5
2 7 6
0 3 2
3 7 3
0 4 0
4 5 0
5 7 2
0 6 0
6 7 7

32
3
0 3 7

> Time and memory limit: 0.5s / 64MB

Problem G: Run for beer

Solution and analysis:
The problem can be restated as follows: given an undirected graph. Consider any path with edge lengths 𝑙𝑙0, 𝑙𝑙1, … , 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1. It's
cost is 𝑙𝑙0  +  10𝑙𝑙1  +  …  +  10𝑙𝑙𝑙𝑙𝑙𝑙−1{𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−1}. We need to find the cost of the cheapest path from 0 to 𝑛𝑛  −  1 and output it.
For now, let's ignore the leading zeros. Notice that the distance after walking the edge (𝑢𝑢,  𝑣𝑣) can be obtained by putting the
length of this edge in front of the distance to get to 𝑢𝑢. So, the trivial solution is to run BFS from vertex 0 and store for each
vertex the smallest number to get to it. But it will run in 𝑂𝑂(𝑁𝑁2) time because we will have to compare large number in order
to get the best one for each vertex.
In order to avoid it we can store the equivalence classes instead of actual numbers, so that we could compare their classes,
not actual numbers. The vertex 0 will have class 0. We will split the graph into layers. The 𝑘𝑘𝑡𝑡ℎ layer will have vertexes with
length of distance exactly 𝑘𝑘. Now process the graph layer by layer. For 𝑘𝑘𝑡𝑡ℎ layer we know all equivalence classes, let's obtain
the {𝑘𝑘  +  1}𝑠𝑠𝑡𝑡 layer and all the equivalence classes for it. Imagine we walked some edge (𝑢𝑢,  𝑣𝑣) with length 𝑙𝑙. The distance
to 𝑣𝑣, 𝑑𝑑(𝑣𝑣) will be 𝑑𝑑(𝑢𝑢) . If we need to compare two numbers with the same length, the equivalence classes allow us to
replace it with just a pair (𝑙𝑙,  𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢)). Store the minimal pair for each vertex of the next layer, sort and shrink them
obtaining the equivalence class for new layer. This is easily done in 𝑂𝑂(𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛(𝑛𝑛)), but also a 𝑂𝑂(𝑛𝑛 · 𝑐𝑐𝑙𝑙𝑎𝑎ℎ𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎) solution exists.
So how do we handle zeros? They behave almost the same way as other digits with only one exception: when they are in
front of distance (leading zeros). For example, the path with length 001 is smaller than 11 despite being longer. The problems
in the middle of the path don't cause any problems to solution described above. To solve this problem, let’s process them in
different manner: calculate for each vertex the smallest number of zeros to get to it from 𝑛𝑛  −  1. Now the answer can be
obtained as follows: walk from 0 to vertex 𝑥𝑥 by the shortest path and go from 𝑥𝑥 to 𝑛𝑛  −  1 only by zero edges.

75

Problem H: Bots

Problem H: Bots
Statement:
Sasha and Ira are two best friends. But they aren’t just friends, they are software engineers and experts in artificial
intelligence. They are developing an algorithm for two bots playing a two-player game. The game is cooperative and turn
based. In each turn, one of the players makes a move (it doesn’t matter which player).
Algorithm for bots that Sasha and Ira are developing works by keeping track of the state the game is in. Each time either
bot makes a move, the state changes. And, since the game is very dynamic, it will never go back to the state it was already
in at any point in the past.
Sasha and Ira are perfectionists and want their algorithm to have an optimal winning strategy. They have noticed that in
the optimal winning strategy, both bots make exactly 𝑁𝑁 moves each. But, in order to find the optimal strategy, their
algorithm needs to analyze all possible states of the game (they haven’t learned about alpha-beta pruning yet) and pick
the best sequence of moves.
They are worried about the efficiency of their algorithm and are wondering what is the total number of states of the game
that need to be analyzed?

Input:
The first and only line contains integer 𝑁𝑁.

Output:
Output should contain a single integer – number of possible states modulo 109 + 7.

Constraints:
• 1 ≤ N ≤ 106

Example input: Example output:
2 19

76

Problem H: Bots

Problem H: Bots
Statement:
Sasha and Ira are two best friends. But they aren’t just friends, they are software engineers and experts in artificial
intelligence. They are developing an algorithm for two bots playing a two-player game. The game is cooperative and turn
based. In each turn, one of the players makes a move (it doesn’t matter which player).
Algorithm for bots that Sasha and Ira are developing works by keeping track of the state the game is in. Each time either
bot makes a move, the state changes. And, since the game is very dynamic, it will never go back to the state it was already
in at any point in the past.
Sasha and Ira are perfectionists and want their algorithm to have an optimal winning strategy. They have noticed that in
the optimal winning strategy, both bots make exactly 𝑁𝑁 moves each. But, in order to find the optimal strategy, their
algorithm needs to analyze all possible states of the game (they haven’t learned about alpha-beta pruning yet) and pick
the best sequence of moves.
They are worried about the efficiency of their algorithm and are wondering what is the total number of states of the game
that need to be analyzed?

Input:
The first and only line contains integer 𝑁𝑁.

Output:
Output should contain a single integer – number of possible states modulo 109 + 7.

Constraints:
• 1 ≤ N ≤ 106

Example input: Example output:
2 19

Problem H: Bots

Explanation:
Start: Game is in state A.
Turn 1: Either bot can make a move (first bot is red and second bot is blue), so there are two possible states after the first
turn – B and C.
Turn 2: In both states B and C, either bot can again make a turn, so the list of possible states is expanded to include D, E, F
and G.
Turn 3: Red bot already did 𝑁𝑁 = 2 moves when in state D, so it cannot make any more moves there. It can make moves
when in state E, F and G, so states I, K and M are added to the list. Similarly, blue bot cannot make a move when in state
G, but can when in D, E and F, so states H, J and L are added.
Turn 4: Red bot already did 𝑁𝑁 = 2 moves when in states H, I and K, so it can only make moves when in J, L and M, so
states P, R and S are added. Blue bot cannot make a move when in states J, L and M, but only when in H, I and K, so states
N, O and Q are added.

Overall, there are 19 possible states of the game their algorithm needs to analyze.

> Time and memory limit: 2s / 64MB

77

Problem H: Bots

Solution and analysis:
Problem naturally can be transformed to a more formal way: how many vertices will a trie contain if we add all possible
strings with length 2 ∗ 𝑁𝑁 with equal number of zeros and ones to it. So, it is obvious that upper half of this tree would be a
full binary tree.
Let’s take a look on 𝑁𝑁 = 3:

• level 0 - 1 vertex,
• level 1 - 2 vertices,
• level 2 - 4 vertices,
• level 3 - 8 vertices.

Starting from 𝑁𝑁𝑡𝑡ℎ level not every vertex will duplicate: only those that haven’t spent theirs 0s or 1s will.

So, here is how to calculate how many vertices will be there on level 𝑖𝑖 + 1:
Lets’ assign Number_of_duplicating_vertices_from_level to 𝑃𝑃𝑃𝑃(𝑖𝑖)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖+1 = 𝑃𝑃𝑃𝑃(𝑖𝑖) ∗ 2 + (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝑃𝑃𝑃𝑃(𝑖𝑖)).

And PD can be calculated pretty easily with binomial coefficients: 𝑃𝑃𝑃𝑃(𝑖𝑖) = 2 ∗ 𝐶𝐶(𝑖𝑖,𝑁𝑁).
Everything else is implementation techniques: inverse module arithmetic’s + some fast way to calculate these 𝐶𝐶(𝑖𝑖,𝑁𝑁).

78

Problem H: Bots

Solution and analysis:
Problem naturally can be transformed to a more formal way: how many vertices will a trie contain if we add all possible
strings with length 2 ∗ 𝑁𝑁 with equal number of zeros and ones to it. So, it is obvious that upper half of this tree would be a
full binary tree.
Let’s take a look on 𝑁𝑁 = 3:

• level 0 - 1 vertex,
• level 1 - 2 vertices,
• level 2 - 4 vertices,
• level 3 - 8 vertices.

Starting from 𝑁𝑁𝑡𝑡ℎ level not every vertex will duplicate: only those that haven’t spent theirs 0s or 1s will.

So, here is how to calculate how many vertices will be there on level 𝑖𝑖 + 1:
Lets’ assign Number_of_duplicating_vertices_from_level to 𝑃𝑃𝑃𝑃(𝑖𝑖)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖+1 = 𝑃𝑃𝑃𝑃(𝑖𝑖) ∗ 2 + (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 − 𝑃𝑃𝑃𝑃(𝑖𝑖)).

And PD can be calculated pretty easily with binomial coefficients: 𝑃𝑃𝑃𝑃(𝑖𝑖) = 2 ∗ 𝐶𝐶(𝑖𝑖,𝑁𝑁).
Everything else is implementation techniques: inverse module arithmetic’s + some fast way to calculate these 𝐶𝐶(𝑖𝑖,𝑁𝑁).

Problem I: Robots protection

Problem I: Robots protection
Statement:
Company “Robots industries” produces robots for territory protection. Robots protect triangle territories – right isosceles
triangles with catheti parallel to North-South and East-West directions.
Owner of some land buys and sets robots on his territory to protect it. From time to time, businessmen want to build
offices on that land and want to know how many robots will guard it. You are to handle these queries.

Input:
The first line contains integer 𝑁𝑁 – width and height of the land, and integer 𝑄𝑄 – number of queries to handle.
Next 𝑄𝑄 lines contain queries you need to process.
Two types of queries:
1 𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 𝑦𝑦 𝑙𝑙𝑙𝑙𝑙𝑙 – add a robot to protect a triangle. Depending on the value of 𝑑𝑑𝑑𝑑𝑑𝑑, the values of 𝑥𝑥,𝑦𝑦 and 𝑙𝑙𝑙𝑙𝑙𝑙 represent a
different triangle:
𝑑𝑑𝑑𝑑𝑑𝑑 = 1: Triangle is defined by the points (𝑥𝑥,𝑦𝑦), (𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙,𝑦𝑦), (𝑥𝑥,𝑦𝑦 + 𝑙𝑙𝑙𝑙𝑙𝑙)
𝑑𝑑𝑑𝑑𝑑𝑑 = 2: Triangle is defined by the points (𝑥𝑥,𝑦𝑦), (𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙,𝑦𝑦), (𝑥𝑥,𝑦𝑦 − 𝑙𝑙𝑙𝑙𝑙𝑙)
𝑑𝑑𝑑𝑑𝑑𝑑 = 3: Triangle is defined by the points (𝑥𝑥,𝑦𝑦), (𝑥𝑥 − 𝑙𝑙𝑙𝑙𝑙𝑙,𝑦𝑦), (𝑥𝑥,𝑦𝑦 + 𝑙𝑙𝑙𝑙𝑙𝑙)
𝑑𝑑𝑑𝑑𝑑𝑑 = 4: Triangle is defined by the points (𝑥𝑥,𝑦𝑦), (𝑥𝑥 − 𝑙𝑙𝑙𝑙𝑙𝑙,𝑦𝑦), (𝑥𝑥,𝑦𝑦 − 𝑙𝑙𝑙𝑙𝑙𝑙)
2 𝑥𝑥 𝑦𝑦 – output how many robots guard this point (robot guards a point if the point is inside or on the border of its
triangle)

Output:
For each second type query output how many robots guard this point. Each answer should be in a separate line.

Constraints:
• 1 ≤ N ≤ 5,000
• 1 ≤ Q ≤ 105
• 1 ≤ dir ≤ 4
• All points of triangles are within range [1, N]
• All numbers are positive integers

79

Problem I: Robots protection

Example input: Example output:
17 10
1 1 3 2 4
1 3 10 3 7
1 2 6 8 2
1 3 9 4 2
2 4 4
1 4 15 10 6
2 7 7
2 9 4
2 12 2
2 13 8

2
2
2
0
1

> Time and memory limit: 1s / 512MB

80

Problem I: Robots protection

Example input: Example output:
17 10
1 1 3 2 4
1 3 10 3 7
1 2 6 8 2
1 3 9 4 2
2 4 4
1 4 15 10 6
2 7 7
2 9 4
2 12 2
2 13 8

2
2
2
0
1

> Time and memory limit: 1s / 512MB

Problem I: Robots protection

Solution and analysis:
To solve this problem, we should first take a look at one easier problem. Consider having the same problem statement, but
with rectangles instead of triangles. The solution to this problem is straightforward.
 We will store a matrix representing points in our coordinate system. For each type 1 query, given the rectangle
((𝑥𝑥𝑢𝑢𝑢𝑢 ,𝑦𝑦𝑢𝑢𝑢𝑢), (𝑥𝑥𝑢𝑢𝑢𝑢 ,𝑦𝑦𝑢𝑢𝑢𝑢), (𝑥𝑥𝑢𝑢𝑢𝑢 ,𝑦𝑦𝑢𝑢𝑢𝑢), (𝑥𝑥𝑢𝑢𝑢𝑢 ,𝑦𝑦𝑢𝑢𝑢𝑢)), we would add -1 to the points (𝑥𝑥𝑢𝑢𝑢𝑢 ,𝑦𝑦𝑢𝑢𝑢𝑢 + 1) and (𝑥𝑥𝑢𝑢𝑢𝑢 + 1, 𝑦𝑦𝑢𝑢𝑢𝑢), and 1 to the points
(𝑥𝑥𝑢𝑢𝑢𝑢 ,𝑦𝑦𝑢𝑢𝑢𝑢) and (𝑥𝑥𝑢𝑢𝑢𝑢 + 1,𝑦𝑦𝑢𝑢𝑢𝑢 + 1). Notice that we expanded the given rectangle when adding +1𝑠𝑠 and −1𝑠𝑠, this is because the
point is considered in the rectangle even when it is on the border! This way, when type 2 query is received, to find the answer
we simply sum every value in the rectangle (0, 0) to (𝑥𝑥,𝑦𝑦). Since simply summing the points in rectangles is 𝑂𝑂(𝑛𝑛2), we should
use binary indexed tree for this, hence getting the sufficient time complexity 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑛𝑛) per query.
We will use this approach with some modification to solve the original problem. For handling the triangles, we need to
introduce new coordinate systems. Depending on the type of triangle (types 1 and 4 are analogous, so are types 2 and 3) we
will make two new coordinate systems, where the corresponding hypotenuses are parallel to one axis. For types 2 and 3,
point (𝑥𝑥,𝑦𝑦) in original coordinate system would map to (𝑥𝑥 + 𝑦𝑦,𝑦𝑦), and for types 1 and 4, point (𝑥𝑥,𝑦𝑦) would map to
(𝑥𝑥 + 𝑛𝑛 − 𝑦𝑦 − 1,𝑦𝑦), where 𝑛𝑛 is the size of coordinate plane given in the input.
The problem is now somewhat abstracted to the simple rectangle problem. This time we will need three matrices, one
representing original coordinate system and two representing the introduced coordinate systems. For each triangle we need
to border it with +1s and -1s, similarly as in the rectangle case, only using 2 matrices for each triangle. When adding border
for the cathetus we use the original coordinate system and for the hypotenuse we need one of the two introduced coordinate
systems, depending on the type of the triangle. Remember, the point belongs to the triangle even when it is on one of catheti
or hypotenuse, so be careful.
For calculating the answer for type 2 query, we need to sum the values in the rectangle from (0, 0) to (𝑥𝑥,𝑦𝑦) in all three
matrices (of course, (𝑥𝑥,𝑦𝑦) needs to be mapped accordingly to the coordinate system each matrix represents). Again, to not
exceed time limit we need to use binary indexed trees.
Since we are using binary indexed tree, the time complexity of this solution is 𝑂𝑂(𝑄𝑄 · 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑁𝑁).

81

Problem A: Cowboy Beblop at his computer

bubble cup 9

Problem A: Cowboy Beblop at his computer

Problem A: Cowboy Beblop at his computer
Cowboy Beblop is a funny little boy who likes sitting at his computer. He somehow obtained two elastic hoops in the
shape of 2𝐷𝐷 polygons, which are not necessarily convex. Since there's no gravity on his spaceship, the hoops are standing
still in the air. Since the hoops are very elastic, Cowboy Beblop can stretch, rotate, translate or shorten their edges as
much as he wants.
For both hoops, you are given the number of their vertices, as well as the position of each vertex, defined by its 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍
coordinates. The vertices are given in the order they're connected: the 1st vertex is connected to the 2nd, which is
connected to the 3rd, etc., and the last vertex is connected to the first one. The hoops are connected if it's impossible to
pull them to infinity in different directions by manipulating their edges, without having their edges or vertices intersect at
any point – just like when two links of a chain are connected. The polygons' edges do not intersect or overlap.
Cowboy Beblop is fascinated with the hoops he has obtained, and he would like to know whether they are connected or
not. Since he’s busy playing with his dog, Zwei, he’d like you to figure it out for him. He promised you some sweets if you
help him!

Input:
The first line of input contains an integer 𝑁𝑁, which denotes the number of edges of the first polygon.
The next 𝑁𝑁 lines each contain the integers 𝑋𝑋, 𝑌𝑌 and 𝑍𝑍 - coordinates of the vertices, in the manner mentioned above.
The next line contains an integer 𝑀𝑀, denoting the number of edges of the second polygon, followed by 𝑀𝑀 lines containing
the coordinates of the second polygon’s vertices.

Output:
Your output should contain only one line, with the words “𝑌𝑌𝑌𝑌𝑌𝑌” or “𝑁𝑁𝑁𝑁”, depending on whether the two given polygons
are connected.

Constraints:
• 3 ≤ N ≤ 105
• 3 ≤ M ≤ 105
• -106 ≤ X , Y , Z ≤ 106

It is guaranteed that both polygons are simple (no self-intersections), and in general that the obtained polygonal lines do
not intersect each other. Also, you can assume that no 3 consecutive points lie on the same line.

Problem A: Cowboy Beblop at his computer

bubble cup 9

83

Problem A: Cowboy Beblop at his computer

Example input: Example output:
4
0 0  0
2  0 0
2  2  0
0 2 0
4
1  1 -1
1  1 1
1  3 1
1  3  -1

YES

Explanation:
In the picture below, the two polygons are connected, as there is no way to pull them apart (they are shaped exactly like
two square links in a chain). Note that the polygons do not have to be parallel to any of the 𝑥𝑥𝑥𝑥−, 𝑥𝑥𝑥𝑥−,𝑥𝑥𝑥𝑥 − planes in
general.

> Time and memory limit: 1s / 64MB

84

Problem A: Cowboy Beblop at his computer

Example input: Example output:
4
0 0  0
2  0 0
2  2  0
0 2 0
4
1  1 -1
1  1 1
1  3 1
1  3  -1

YES

Explanation:
In the picture below, the two polygons are connected, as there is no way to pull them apart (they are shaped exactly like
two square links in a chain). Note that the polygons do not have to be parallel to any of the 𝑥𝑥𝑥𝑥−, 𝑥𝑥𝑥𝑥−,𝑥𝑥𝑥𝑥 − planes in
general.

> Time and memory limit: 1s / 64MB

Problem A: Cowboy Beblop at his computer

Solution and analysis:
The solution to this task effectively consists of two parts: analyzing the geometry and the relations between the two polygons
and deriving whether they intersect or not.
For the second part, we need to find all intersections between each of the polygons and the common line of their two planes.
Once that is done, and the intersection points along the line are sorted, we can simply go through them and count the
number of intersection of, say, polygon P1 with the inside of polygon P2, as well as keep track of the directions in which it
passes through P2. Whenever we reach a point belonging to polygon P2, our position (inside or outside of polygon P2)
changes. Now we simply count points belonging to polygon P1, which we reach while being inside of the polygon P2. This
solution has the complexity of 𝑂𝑂(𝑁𝑁 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁), where 𝑁𝑁 is the sum of the edges of the two polygons.
As for the geometry – it seems that an approach using vectors (the mathematical ones, not arrays with variable length) is
much easier than the others. It relieves the coder from having to solve complicated equations, but instead uses relatively
simple calculus, once all the vector operations have been defined. Thus, we first define the vectors of the two polygons’ planes
as the vector product of two consecutive edges’ vectors. The two consecutive vectors will be used as the base of the 2𝐷𝐷 vector
space defined by the plane. Then, for each edge of both polygons, we need to see whether it has intersections with the other
polygon’s plane or not. Let’s observe the case when the edge’s end points (let’s label them 𝐴𝐴 and 𝐵𝐵) are on the opposite sides
of the plane (𝛼𝛼). If the angle between 𝛼𝛼’s direction vector and the vector from 𝐴𝐴 to a random point in 𝛼𝛼 is acute, then the
angle between 𝛼𝛼’s direction vector and the vector from 𝐵𝐵 to the same point will be obtuse, and vice-versa. Thus, if the dot
products of the two vectors for both 𝐴𝐴 and 𝐵𝐵 are of different sign, they are on the opposite side of 𝛼𝛼 and there is an
intersection. If either of the products is zero, then the corresponding point is inside 𝛼𝛼 (this case will be discussed later on).
Finding the point of intersection (point 𝑋𝑋) between the line 𝐴𝐴𝐵𝐵 and 𝛼𝛼 can be done in several ways. One solution is to pick a
random point in 𝛼𝛼 (point 𝐶𝐶) and observe the vector 𝐶𝐶𝐴𝐴. It is easy to see that one can represent it as a linear combination of
𝛼𝛼’s base vectors and the vector 𝐴𝐴𝐵𝐵. Once the parameters of the linear combination have been found by solving the system of
equations (determinants seem easiest), one can simply ignore the component associated with the vector 𝐴𝐴𝐵𝐵. The rest will
sum up to the vector 𝐶𝐶𝑋𝑋, and thus 𝑋𝑋 is found. It can also be done with even simpler expressions using vectors (left to the
reader to find out), but this solution seemed very intuitive and easy to code, so I stuck with it.
The only special case happens when a polygon’s vertex lies exactly on the other polygon’s plane. In that case, one simply
observes the previous and the next vertex and whether they are on the opposite sides of the plane or not. If they are – the
intersection is taken as the “problematic” point and if they are not, we assume there is no intersection. See Picture 1 and
Picture 2. Similar applies when two consecutive points are lying on the plane. Please note that simply ignoring the point
lying on the other polygon’s plane is wrong.

85

Problem A: Cowboy Beblop at his computer

Picture 1: Point E is on plane of A-B-C-D polygon. FG segment doesn’t intersect A-B-C-D polygon, so E is not point of

intersection.

Picture 2: Point E is on plane of A-B-C-D polygon. In this case FG segment intersect A-B-C-D polygon, so E is point of

intersection.

86

Problem A: Cowboy Beblop at his computer

Picture 1: Point E is on plane of A-B-C-D polygon. FG segment doesn’t intersect A-B-C-D polygon, so E is not point of

intersection.

Picture 2: Point E is on plane of A-B-C-D polygon. In this case FG segment intersect A-B-C-D polygon, so E is point of

intersection.

Problem B: Underfail

Problem B: Underfail
You have recently fallen through a hole and, after several hours of unconsciousness, you realized you are in an
underground city. On one of your regular daily walks through the unknown, you have encountered two unusually looking
skeletons called Sanz and P’pairus, who decided to accompany you and give you some puzzles for seemingly unknown
reasons.
One day, Sanz has created a crossword for you. Not any kind of crossword, but a 1𝐷𝐷 crossword! You are given a string of
length 𝑁𝑁 and 𝑀𝑀 words, none of which is longer than 𝐾𝐾. You are also given an array 𝑃𝑃[], which designates how much each
word is worth – the 𝑖𝑖𝑡𝑡ℎ word is worth 𝑃𝑃[𝑖𝑖] points.
Whenever you find one of the 𝑀𝑀 words in the string, you are given the corresponding number of points. Each letter in the
crossword can be used at most 𝑋𝑋 times. A certain word can be counted at different places, but you cannot count the same
appearance of a word multiple times. If a word is a substring of another word, you can count them both (presuming you
haven’t used the letters more than 𝑋𝑋 times).
In order to solve the puzzle, you need to tell Sanz what’s the maximum achievable number of points in the crossword.

Input:
The first line of input will contain one integer 𝑁𝑁– the length of the crossword, and the second line will contain the
crossword string. The third line will contain the integer 𝑀𝑀 – the number of given words, and the next 𝑀𝑀 lines will contain
descriptions of words: each line will have a word string and an integer 𝑝𝑝. The last line of the input will contain 𝑋𝑋 – the
maximal number of times a position in the crossword can be used.

Output:
Output a single integer – the maximal number of points you can get.

Constraints:
• 1 ≤ N ≤ 500
• 1 ≤ M ≤ 100
• 1 ≤ X ≤ 100
• 1 ≤ K ≤ 500
• 0 ≤ p ≤ 100

87

Problem B: Underfail

Example input: Example output:
6
abacba
2
aba 6
ba 3
3

12

 Explanation:
For example, with the string “𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎”, words “𝑎𝑎𝑎𝑎𝑎𝑎” (6 points) and “𝑎𝑎𝑎𝑎” (3 points), and 𝑋𝑋 = 3, you can get at most 12 points
- the word “𝑎𝑎𝑎𝑎𝑎𝑎” appears once (“𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎”), while “𝑎𝑎𝑎𝑎” appears two times (“𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎”). Note that for 𝑋𝑋 = 1, you could get at
most 9 points, since you wouldn’t be able to count both “𝑎𝑎𝑎𝑎𝑎𝑎” and the first appearance of “𝑎𝑎𝑎𝑎”.

> Time and memory limit: 2s / 256MB

88

Problem B: Underfail

Example input: Example output:
6
abacba
2
aba 6
ba 3
3

12

 Explanation:
For example, with the string “𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎”, words “𝑎𝑎𝑎𝑎𝑎𝑎” (6 points) and “𝑎𝑎𝑎𝑎” (3 points), and 𝑋𝑋 = 3, you can get at most 12 points
- the word “𝑎𝑎𝑎𝑎𝑎𝑎” appears once (“𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎”), while “𝑎𝑎𝑎𝑎” appears two times (“𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎”). Note that for 𝑋𝑋 = 1, you could get at
most 9 points, since you wouldn’t be able to count both “𝑎𝑎𝑎𝑎𝑎𝑎” and the first appearance of “𝑎𝑎𝑎𝑎”.

> Time and memory limit: 2s / 256MB

Problem B: Underfail

Solution and analysis:
In the basic case (when 𝑋𝑋 = 1) we have a common DP problem. Unfortunately, for larger 𝑋𝑋 it is much more complicated, so
the basic case cannot be generalized.
Instead, we can look at this problem as a graph problem. We represent the crossword as a directed weighted graph, where
edges have both a cost and a capacity. First, we represent every letter from the crossword as a vertex and add an extra source
and sink node. Then, we connect each letter’s vertex with the next one with an edge of capacity ∞ and cost 0. Also, we
connect the source node with the first letter and we connect the last letter with the sink node using the same kind of edge.
Finally, for every position where one of the given words matches a substring, we connect the first letter of the match with a
letter just after the end of the match with an edge of capacity 1 and a cost equal to the score we get for the word. By doing it
for an example input we get this graph:

Any flow with total capacity 𝑋𝑋 is equivalent to a set of selected words that satisfies the given constraint, since we can have at
most 𝑋𝑋 “overlapping” 1-capacity edges. The problem now reduces to maximizing the cost of that flow, which can be done by
adapting an algorithm that solves the min-cost flow problem (by using negative values). Using an adaptation of Bellman-
Ford algorithm we can get a complexity of 𝑂𝑂(𝐸𝐸2𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉).

89

Problem C: Paint it really, really black

Problem C: Paint it really, really black
I see a pink boar and I want it painted black. Black boars look much more awesome and mighty than the pink ones. Since
Jaggy became the ruler of the forest, he has been trying his best to improve the diplomatic relations between the forest
region and the ones nearby.
Some other rulers, however, have requested too much in return for peace between their two regions, so he realized he has
to resort to intimidation. Once a delegate for diplomatic relations of a neighboring region visits Jaggy’s forest, they might
suddenly change their mind about attacking Jaggy, if they see a whole bunch of black boars. Black boars are really scary,
after all.
Jaggy’s forest can be represented as a tree (graph without cycles) with 𝑁𝑁 vertices. Each vertex represents a boar and is
colored either black or pink. Jaggy has sent a squirrel to travel through the forest and paint all the boars black. The
squirrel, however, is quite unusually trained and while it traverses the graph, it changes the color of every vertex it visits,
regardless of its initial color: pink vertices become black and black vertices become pink.
Since Jaggy is too busy to plan the squirrel’s route, he needs your help. He wants you to construct a walk through the tree
starting from vertex 1 such that in the end all vertices are black. A walk is any alternating sequence of vertices and edges,
starting and ending with a vertex, such that every edge in the sequence connects the vertices before and after it.

Input:
The first line of input contains the integer 𝑁𝑁, denoting the number of nodes of the graph. The following line contains 𝑁𝑁
integers, which represent the color of each node.
 If the 𝑖𝑖𝑡𝑡ℎinteger is:
1, then the corresponding node is black
−1 , then the node is pink.
Each of the next 𝑁𝑁 − 1 lines contain two integers, which represent the indexes of the nodes which are connected (one-
based).

Output:
Output the path of a squirrel: output a sequence of visited nodes' indexes in order of visiting. In case all of the nodes are
initially black you should print 1.

Constraints:
• 2 ≤ N ≤ 2 · 105

90

Problem C: Paint it really, really black

Problem C: Paint it really, really black
I see a pink boar and I want it painted black. Black boars look much more awesome and mighty than the pink ones. Since
Jaggy became the ruler of the forest, he has been trying his best to improve the diplomatic relations between the forest
region and the ones nearby.
Some other rulers, however, have requested too much in return for peace between their two regions, so he realized he has
to resort to intimidation. Once a delegate for diplomatic relations of a neighboring region visits Jaggy’s forest, they might
suddenly change their mind about attacking Jaggy, if they see a whole bunch of black boars. Black boars are really scary,
after all.
Jaggy’s forest can be represented as a tree (graph without cycles) with 𝑁𝑁 vertices. Each vertex represents a boar and is
colored either black or pink. Jaggy has sent a squirrel to travel through the forest and paint all the boars black. The
squirrel, however, is quite unusually trained and while it traverses the graph, it changes the color of every vertex it visits,
regardless of its initial color: pink vertices become black and black vertices become pink.
Since Jaggy is too busy to plan the squirrel’s route, he needs your help. He wants you to construct a walk through the tree
starting from vertex 1 such that in the end all vertices are black. A walk is any alternating sequence of vertices and edges,
starting and ending with a vertex, such that every edge in the sequence connects the vertices before and after it.

Input:
The first line of input contains the integer 𝑁𝑁, denoting the number of nodes of the graph. The following line contains 𝑁𝑁
integers, which represent the color of each node.
 If the 𝑖𝑖𝑡𝑡ℎinteger is:
1, then the corresponding node is black
−1 , then the node is pink.
Each of the next 𝑁𝑁 − 1 lines contain two integers, which represent the indexes of the nodes which are connected (one-
based).

Output:
Output the path of a squirrel: output a sequence of visited nodes' indexes in order of visiting. In case all of the nodes are
initially black you should print 1.

Constraints:
• 2 ≤ N ≤ 2 · 105

Problem C: Paint it really, really black

Example input:
5
1 1 -1 1 -1
2 5
4 3
2 4
4 1

Example output:
1 4 2 5 2 4 3

Explanation:
At the beginning squirrel is at node 1 and its color is black. Next steps are as follows:
From node 1 we walk to node 4 and change its color to pink
From node 4 we walk to node 2 and change its color to pink
From node 2 we walk to node 5 and change its color to black
From node 5 we return to node 2 and change its color to black
From node 2 we walk to node 4 and change its color to black
Finally, we visit node 3 and change its color to black

> Time and memory limit: 2s / 256MB

91

Problem C: Paint it really, really black

Solution and analysis:
Root the tree at node 1. Now notice that if we had a function 𝐹𝐹 such that 𝐹𝐹(𝑛𝑛) colors the whole subtree of node 𝑛𝑛 black
(except maybe n itself) and returns us to 𝑛𝑛 in the process, we can easily solve the problem. Let 𝑝𝑝 be the parent of 𝑛𝑛. Then
after entering 𝑛𝑛 do 𝐹𝐹(𝑛𝑛). If 𝑛𝑛 is black, go to 𝑝𝑝 and never return to that subtree again. Otherwise, go from 𝑛𝑛 to 𝑝𝑝 then to 𝑛𝑛
then to 𝑝𝑝. Now 𝑛𝑛 is black and we can continue to do the same for other children of 𝑝𝑝 and so on.
Now it is easy to see that all that we need to do is to make DFS-like tour of the tree and upon returning from a node to a
corresponding parent we check the color of the child node. If it is black, continue normally, otherwise visit it again and again
return to the parent and then continue normally. The only exception is the root node as it has no parent. After finishing the
tour and ending up in node 1, if it is black, we are done. If not, it is the only white one and we can select any child 𝒄𝒄 of 1 and
do 1 – 𝑐𝑐 – 1 − 𝑐𝑐. Now all nodes are black.
It is recommended to do the implementation with stack. Complexity is 𝑂𝑂(𝑁𝑁).

92

Problem C: Paint it really, really black

Solution and analysis:
Root the tree at node 1. Now notice that if we had a function 𝐹𝐹 such that 𝐹𝐹(𝑛𝑛) colors the whole subtree of node 𝑛𝑛 black
(except maybe n itself) and returns us to 𝑛𝑛 in the process, we can easily solve the problem. Let 𝑝𝑝 be the parent of 𝑛𝑛. Then
after entering 𝑛𝑛 do 𝐹𝐹(𝑛𝑛). If 𝑛𝑛 is black, go to 𝑝𝑝 and never return to that subtree again. Otherwise, go from 𝑛𝑛 to 𝑝𝑝 then to 𝑛𝑛
then to 𝑝𝑝. Now 𝑛𝑛 is black and we can continue to do the same for other children of 𝑝𝑝 and so on.
Now it is easy to see that all that we need to do is to make DFS-like tour of the tree and upon returning from a node to a
corresponding parent we check the color of the child node. If it is black, continue normally, otherwise visit it again and again
return to the parent and then continue normally. The only exception is the root node as it has no parent. After finishing the
tour and ending up in node 1, if it is black, we are done. If not, it is the only white one and we can select any child 𝒄𝒄 of 1 and
do 1 – 𝑐𝑐 – 1 − 𝑐𝑐. Now all nodes are black.
It is recommended to do the implementation with stack. Complexity is 𝑂𝑂(𝑁𝑁).

Problem D: Potions homework

Problem D: Potions homework
Ronaldo, Her-my-oh-knee and their friends have started a new school year at their MDCS School of Speechcraft and
Misery. At the time, they are very happy to have seen each other after a long time. The sun is shining, birds are singing,
flowers are blooming, and their Potions class teacher, professor Snipe is sulky as usual. Due to his angst fueled by
disappointment in his own life, he has given them a lot of homework in Potions class.
Each of the 𝑁𝑁 students have been assigned a single task. Some students do certain tasks faster than others. Thus, they
want to redistribute the tasks so that each student still does exactly one task, and that all tasks are finished.
Each student has their own laziness level, and each task has its own difficulty level. Professor Snipe is trying hard to
improve their work ethics, so each student’s laziness level is equal to their task’s difficulty level.
Both sets of values are given in the array 𝐴𝐴, where 𝐴𝐴[𝑖𝑖] represents both the laziness level of the 𝑖𝑖𝑡𝑡ℎ student and the
difficulty of their task. The time a student needs to finish a task is equal to the product of their laziness level and the task’s
difficulty.
They have asked you what is the shortest possible (total) time they must spend to finish all tasks.

Input:
The first line of input contains the integer 𝑁𝑁, which represents the total number of tasks. The next 𝑁𝑁 lines contain exactly
one integer each, which represents the difficulty of the task and the laziness of the student who initially received the task.

Output:
Your output should consist of only one line – the minimum time needed to finish all tasks, modulo 10007.

Constraints:
• 1 ≤ N ≤ 100,000
• 1 ≤ A[i] ≤ 100,000

Example input:
2
1
3

Example output:
6

Explanation:
If the students switch their tasks, they will be able to finish them in 3+3=6 time units.

> Time and memory limit: 0.1s / 64MB

93

Problem D: Potions homework

Solution and analysis:
Everything is pretty simple here. What should be done here is to give the laziest student the easiest task, because it is always
optimal to do so. If we do that continuously, it becomes obvious that solution is to sort the given array and get the following
formula:

∑𝐴𝐴[𝑖𝑖]∗ 𝐴𝐴[𝑁𝑁 − 𝑖𝑖 − 1]
𝑁𝑁

𝑖𝑖=1

94

Problem D: Potions homework

Solution and analysis:
Everything is pretty simple here. What should be done here is to give the laziest student the easiest task, because it is always
optimal to do so. If we do that continuously, it becomes obvious that solution is to sort the given array and get the following
formula:

∑𝐴𝐴[𝑖𝑖]∗ 𝐴𝐴[𝑁𝑁 − 𝑖𝑖 − 1]
𝑁𝑁

𝑖𝑖=1

Problem E: Festival organization

Problem E: Festival organization
The Prodiggers are quite a cool band and for this reason, they have been the surprise guest at the ENTER festival for the
past 80 years. At the beginning of their careers, they weren’t so successful, so they had to spend time digging channels to
earn money; hence the name.
Anyway, they like to tour a lot and have surprising amounts of energy to do extremely long tours. However, they hate
spending two consecutive days without having a concert, so they would very much like to avoid it.
The Prodiggers would like to hold 𝐾𝐾 tours of length of at least 𝐿𝐿 days, and at most 𝑅𝑅 days. Since they are quite
superstitious, they want all their tours to have the same length and different schedules (regarding playing concerts and
skipping days). Additionally, they would absolutely hate to skip two consecutive days in a single tour. Since their schedule
is quite busy, they want you to tell them in how many ways can they hold the 𝐾𝐾 tours, modulo 𝑀𝑀.

Input:
The first and only line of input will contain 3 numbers: K, L, R

Output:
Output a single number: in how many ways can they hold the K tours, modulo M=1,000,000,007.

Constraints:
• 1 ≤ K ≤ 200
• 1 ≤ L ≤ R ≤ 1018

Example input:
1 1 2

Example output:
5

> Time and memory limit: 1s / 256MB

95

Problem E: Festival organization

Solution and analysis:

It is easy to prove that the answer for the query is ∑ (𝐹𝐹𝑛𝑛+2𝑘𝑘)𝑟𝑟
𝑛𝑛 = 𝑙𝑙 = ∑ (𝐹𝐹𝑛𝑛+2𝑘𝑘)𝑟𝑟

𝑛𝑛 = 0 − ∑ (𝐹𝐹𝑛𝑛+2𝑘𝑘)𝑙𝑙−1
𝑛𝑛 = 0 , where 𝐹𝐹𝑛𝑛 are Fibonacci

numbers. Let's notice, that (𝑥𝑥𝑘𝑘) is a polynomial for x and can be expressed in the form 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + … + 𝑐𝑐𝑘𝑘𝑥𝑥𝑘𝑘 . Knowing

this we can express the answer in a different way ∑ (𝐹𝐹𝑛𝑛+2𝑘𝑘)𝑟𝑟
𝑛𝑛 = 𝑙𝑙 = ∑ ∑ 𝑐𝑐𝑚𝑚𝐹𝐹𝑛𝑛+2𝑚𝑚𝑘𝑘

𝑚𝑚 =0 = ∑ 𝑐𝑐𝑚𝑚𝑘𝑘
𝑚𝑚=0 ∑ 𝐹𝐹𝑛𝑛+2𝑚𝑚𝑟𝑟

𝑛𝑛=0
𝑟𝑟
𝑛𝑛=0 .

Thus, we reduced our problem to computing the sum of 𝑚𝑚th powers of Fibonacci numbers.

To do so we will refer to Binet's formula 𝐹𝐹𝑛𝑛 = 1
√5 ((

1 + √5
2)

𝑛𝑛
 – (1 – √5

2)
𝑛𝑛
) or 𝐹𝐹𝑛𝑛 = √55 (𝜙𝜙𝑛𝑛 – 𝜓𝜓𝑛𝑛).

𝐹𝐹𝑛𝑛𝑚𝑚 = (√55)
𝑚𝑚

(𝜙𝜙𝑛𝑛 − 𝜓𝜓𝑛𝑛)𝑚𝑚 = (√55)
𝑚𝑚
∑ (−1)𝑚𝑚−𝑗𝑗(𝑗𝑗𝑚𝑚)𝜙𝜙𝑛𝑛𝑗𝑗𝜓𝜓𝑛𝑛(𝑚𝑚−𝑗𝑗)𝑚𝑚
𝑗𝑗=0

It reduces to the following:

 ∑ 𝐹𝐹𝑛𝑛𝑚𝑚 = 𝑟𝑟
𝑛𝑛=0 (√55)

𝑚𝑚
∑ ∑ (−1)𝑚𝑚−𝑗𝑗(𝑗𝑗𝑚𝑚)(𝜙𝜙𝑗𝑗𝜓𝜓(𝑚𝑚−𝑗𝑗))𝑛𝑛𝑚𝑚

𝑗𝑗=0 = (√55)
𝑚𝑚
∑ (−1)𝑚𝑚−𝑗𝑗(𝑗𝑗𝑚𝑚)𝑚𝑚
𝑗𝑗 =0 ∑ (𝜙𝜙𝑗𝑗𝜓𝜓(𝑚𝑚−𝑗𝑗))𝑛𝑛𝑟𝑟

𝑛𝑛 = 0 𝑟𝑟
𝑛𝑛=0

The inner sum is almost always a geometric progression with 𝑏𝑏0 = 1 and, 𝑞𝑞 = 𝜙𝜙𝑗𝑗𝜓𝜓(𝑚𝑚−𝑗𝑗) except for the cases when,

𝜙𝜙𝑗𝑗𝜓𝜓(𝑚𝑚−𝑗𝑗) = 1 but we may avoid any special cases by computing it in a way similar to binary exponentiation.

Indeed, in order to compute ∑ 𝑞𝑞𝑛𝑛𝑟𝑟
𝑛𝑛=0 , we may start with computing ∑ 𝑞𝑞𝑛𝑛2𝑘𝑘 − 1

𝑛𝑛=0 and 𝑞𝑞2𝑘𝑘 .Two sums with m1 and m2

elements can be merged together in the following way: ∑ 𝑞𝑞𝑛𝑛 = ∑ 𝑞𝑞𝑛𝑛 𝑚𝑚1−1
𝑛𝑛=0 + 𝑞𝑞𝑚𝑚1 ∑ 𝑞𝑞𝑛𝑛𝑚𝑚1+𝑚𝑚2−1

𝑛𝑛=0
𝑚𝑚1+𝑚𝑚2−1
𝑛𝑛 = 0 .

Thus, we can compute the sum of 𝑚𝑚th powers only with additions and multiplications. The only difficulty is that there is

√5 present in these formulas (in 𝜙𝜙 and 𝜓𝜓) and there is no such number modulo 109 + 7. The solution to this is simple: let's

never specify an exact value for it. This way we will always work with numbers of the form 𝑎𝑎 + √5𝑏𝑏.The addition and

multiplication of these numbers is fairly easy: (𝑎𝑎 + √5𝑏𝑏) + (𝑐𝑐 + √5𝑑𝑑) = (𝑎𝑎 + 𝑐𝑐) + √5(𝑏𝑏 + 𝑑𝑑),

(𝑎𝑎 + √5𝑏𝑏)(𝑐𝑐 + √5𝑑𝑑) = (𝑎𝑎𝑐𝑐 + 5𝑏𝑏𝑑𝑑) + √5(𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑐𝑐);

These are the only operations that we require. The sum of Fibonacci numbers (which are integers) is also integer, so the final

result will never contain any √5. Thus, we have solved this problem.

96

Problem E: Festival organization

Solution and analysis:

It is easy to prove that the answer for the query is ∑ (𝐹𝐹𝑛𝑛+2𝑘𝑘)𝑟𝑟
𝑛𝑛 = 𝑙𝑙 = ∑ (𝐹𝐹𝑛𝑛+2𝑘𝑘)𝑟𝑟

𝑛𝑛 = 0 − ∑ (𝐹𝐹𝑛𝑛+2𝑘𝑘)𝑙𝑙−1
𝑛𝑛 = 0 , where 𝐹𝐹𝑛𝑛 are Fibonacci

numbers. Let's notice, that (𝑥𝑥𝑘𝑘) is a polynomial for x and can be expressed in the form 𝑐𝑐0 + 𝑐𝑐1𝑥𝑥 + … + 𝑐𝑐𝑘𝑘𝑥𝑥𝑘𝑘 . Knowing

this we can express the answer in a different way ∑ (𝐹𝐹𝑛𝑛+2𝑘𝑘)𝑟𝑟
𝑛𝑛 = 𝑙𝑙 = ∑ ∑ 𝑐𝑐𝑚𝑚𝐹𝐹𝑛𝑛+2𝑚𝑚𝑘𝑘

𝑚𝑚 =0 = ∑ 𝑐𝑐𝑚𝑚𝑘𝑘
𝑚𝑚=0 ∑ 𝐹𝐹𝑛𝑛+2𝑚𝑚𝑟𝑟

𝑛𝑛=0
𝑟𝑟
𝑛𝑛=0 .

Thus, we reduced our problem to computing the sum of 𝑚𝑚th powers of Fibonacci numbers.

To do so we will refer to Binet's formula 𝐹𝐹𝑛𝑛 = 1
√5 ((

1 + √5
2)

𝑛𝑛
 – (1 – √5

2)
𝑛𝑛
) or 𝐹𝐹𝑛𝑛 = √55 (𝜙𝜙𝑛𝑛 – 𝜓𝜓𝑛𝑛).

𝐹𝐹𝑛𝑛𝑚𝑚 = (√55)
𝑚𝑚

(𝜙𝜙𝑛𝑛 − 𝜓𝜓𝑛𝑛)𝑚𝑚 = (√55)
𝑚𝑚
∑ (−1)𝑚𝑚−𝑗𝑗(𝑗𝑗𝑚𝑚)𝜙𝜙𝑛𝑛𝑗𝑗𝜓𝜓𝑛𝑛(𝑚𝑚−𝑗𝑗)𝑚𝑚
𝑗𝑗=0

It reduces to the following:

 ∑ 𝐹𝐹𝑛𝑛𝑚𝑚 = 𝑟𝑟
𝑛𝑛=0 (√55)

𝑚𝑚
∑ ∑ (−1)𝑚𝑚−𝑗𝑗(𝑗𝑗𝑚𝑚)(𝜙𝜙𝑗𝑗𝜓𝜓(𝑚𝑚−𝑗𝑗))𝑛𝑛𝑚𝑚

𝑗𝑗=0 = (√55)
𝑚𝑚
∑ (−1)𝑚𝑚−𝑗𝑗(𝑗𝑗𝑚𝑚)𝑚𝑚
𝑗𝑗 =0 ∑ (𝜙𝜙𝑗𝑗𝜓𝜓(𝑚𝑚−𝑗𝑗))𝑛𝑛𝑟𝑟

𝑛𝑛 = 0 𝑟𝑟
𝑛𝑛=0

The inner sum is almost always a geometric progression with 𝑏𝑏0 = 1 and, 𝑞𝑞 = 𝜙𝜙𝑗𝑗𝜓𝜓(𝑚𝑚−𝑗𝑗) except for the cases when,

𝜙𝜙𝑗𝑗𝜓𝜓(𝑚𝑚−𝑗𝑗) = 1 but we may avoid any special cases by computing it in a way similar to binary exponentiation.

Indeed, in order to compute ∑ 𝑞𝑞𝑛𝑛𝑟𝑟
𝑛𝑛=0 , we may start with computing ∑ 𝑞𝑞𝑛𝑛2𝑘𝑘 − 1

𝑛𝑛=0 and 𝑞𝑞2𝑘𝑘 .Two sums with m1 and m2

elements can be merged together in the following way: ∑ 𝑞𝑞𝑛𝑛 = ∑ 𝑞𝑞𝑛𝑛 𝑚𝑚1−1
𝑛𝑛=0 + 𝑞𝑞𝑚𝑚1 ∑ 𝑞𝑞𝑛𝑛𝑚𝑚1+𝑚𝑚2−1

𝑛𝑛=0
𝑚𝑚1+𝑚𝑚2−1
𝑛𝑛 = 0 .

Thus, we can compute the sum of 𝑚𝑚th powers only with additions and multiplications. The only difficulty is that there is

√5 present in these formulas (in 𝜙𝜙 and 𝜓𝜓) and there is no such number modulo 109 + 7. The solution to this is simple: let's

never specify an exact value for it. This way we will always work with numbers of the form 𝑎𝑎 + √5𝑏𝑏.The addition and

multiplication of these numbers is fairly easy: (𝑎𝑎 + √5𝑏𝑏) + (𝑐𝑐 + √5𝑑𝑑) = (𝑎𝑎 + 𝑐𝑐) + √5(𝑏𝑏 + 𝑑𝑑),

(𝑎𝑎 + √5𝑏𝑏)(𝑐𝑐 + √5𝑑𝑑) = (𝑎𝑎𝑐𝑐 + 5𝑏𝑏𝑑𝑑) + √5(𝑎𝑎𝑑𝑑 + 𝑏𝑏𝑐𝑐);

These are the only operations that we require. The sum of Fibonacci numbers (which are integers) is also integer, so the final

result will never contain any √5. Thus, we have solved this problem.

Problem F: Pokermon League Challenge

Problem F: Pokermon League challenge
Welcome to the world of Pokermon, yellow little mouse-like creatures, who absolutely love playing poker!
Yeah, right…
In the ensuing Pokermon League, there are 𝑁𝑁 registered Pokermon trainers, and 𝑇𝑇 existing trainer teams. Since there is a
lot of jealousy between trainers, there are 𝐸𝐸 pairs of trainers who hate each other. Their hate is mutual, there are no
identical pairs among these, and no trainer hates himself (the world of Pokermon is a joyful place!). Each trainer has a
wish-list of length 𝐿𝐿 of teams he’d like to join. All the teams are divided into two conferences.
Your task is to divide players into teams and the teams into two conferences, so that:

• each trainer belongs to exactly one team
• no team is in both conferences
• total hate between conferences is at least 𝐸𝐸

2
• every trainer is in a team from his wish-list

Total hate between conferences is calculated as the number of pairs of trainers from teams from different conferences
who hate each other.

Input:
The first line of input contains 2 non-negative integers:

• 𝑁𝑁 - total number of Pokermon trainers
• 𝐸𝐸 - number of pairs of trainers who hate each other

Each Pokermon trainer is represented by a number between [1,𝑁𝑁]
The next 𝐸𝐸 lines contain 2 integers 𝐴𝐴 and 𝐵𝐵 indicating that Pokermon trainers 𝐴𝐴 and 𝐵𝐵 hate each other
The next 2𝑁𝑁 lines are in a following format:
Starting with Pokermon trainer 1, for every trainer in consecutive order:

• first number 𝐿𝐿 - a size of Pokermon trainers wish list
• in the next line are positive integers 𝑡𝑡[𝑖𝑖] - the teams Pokermon trainer would like to be on.

Each trainer’s wish list will not contain repeating teams.
Teams on the wish lists are numbered in such a way that the set of all teams that appear on at least 𝟏𝟏 wish list is set of
consecutive positive integers {1, 2, 3, . . . ,𝑇𝑇}.

Output:
Contains 2 lines:
The first line contains 𝑁𝑁 numbers, specifying the team every trainer is in. First for trainer 1, then 2, etc.
The second line contains 𝑇𝑇 numbers where for every team, starting with team 1, there is an integer specifying the
conference (1 or 2) of that team.

97

Problem F: Pokermon League Challenge

Constraints:
• 4 ≤ N ≤ 50,000
• 2 ≤ E ≤ 100,000
• 16 ≤ L ≤ 20
• 1 ≤ t[i]≤ T
• 1 ≤ T ≤ 1,000,000
• 1 ≤ A, B ≤ N

Example input:
4 3
1 2
2 3
4 1
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 15
16
2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18
16
2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19

Example output:
1 2 2 3
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Explanation:
Conference 1 contains only team 1, and conference 2 contains all other teams. Total hate between conferences is 2 which
is greater than 𝐸𝐸2 = 3

2 = 1.5.
Pokermon trainer 1 belongs to team 1, trainers 2 and 3 to team 2 and trainer 4 to team 3. Other teams are empty but they
have been assigned a conference.

> Time and memory limit: 5s / 256MB

98

Problem F: Pokermon League Challenge

Constraints:
• 4 ≤ N ≤ 50,000
• 2 ≤ E ≤ 100,000
• 16 ≤ L ≤ 20
• 1 ≤ t[i]≤ T
• 1 ≤ T ≤ 1,000,000
• 1 ≤ A, B ≤ N

Example input:
4 3
1 2
2 3
4 1
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 15
16
2 3 4 5 6 7 8 9 10 11 12 13 14 15 17 18
16
2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 19
16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 19

Example output:
1 2 2 3
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Explanation:
Conference 1 contains only team 1, and conference 2 contains all other teams. Total hate between conferences is 2 which
is greater than 𝐸𝐸2 = 3

2 = 1.5.
Pokermon trainer 1 belongs to team 1, trainers 2 and 3 to team 2 and trainer 4 to team 3. Other teams are empty but they
have been assigned a conference.

> Time and memory limit: 5s / 256MB

Problem F: Pokermon League Challenge

Solution and analysis:
The key idea is to first put players into conferences and then assign them teams. We go through all of the players and put
them into conferences so that the first condition is satisfied. We take them one by one and select a conference for each player
such that he hates more (or equally many) players in the other conference that the one we put him in. That means that at
any point of this process, there will be more hate edges connecting players in different conferences than those connecting
players in the same conferences. Thus, in the end, we have satisfied first condition. Complexity is 𝑂𝑂(𝑁𝑁 + 𝐸𝐸) for this part.
Now we will try to satisfy the second condition by assigning teams to the players. Let 𝑺𝑺 be the set of all of the teams that
appear on at least one wish-list. Let's select some subset 𝑨𝑨 of 𝑺𝑺. We select it in a way that every element from 𝑺𝑺 will be
thrown in it with 50% chance. Now, we will assign teams from 𝑨𝑨 to players in conference 1 and teams from 𝑨𝑨𝒄𝒄 to players in
conference 2. If such assigning is possible while satisfying the second condition, we will be done. Let's see what is the chance
that a particular player in conference 1 can't be assigned a valid team from 𝑨𝑨. That means none of at least 16 teams on his
wish-list are in 𝑨𝑨. The chance for that is 1

216. Same goes for all players in conference 1 and equivalently for conference 2. So,
the chance that at least one player can't be assigned a team is at most 𝑁𝑁 ∙ 1

216 ≤ 0.77. This means that there is at least 23%
chance that this method will give us the final solution which fulfills both problem conditions. This means that after a several
steps, we will very likely solve the problem. Complexity is 𝑂𝑂(𝑁𝑁𝑁𝑁) for this part. For example, if we do 30 steps, the probability
that we will find a correct solution is 1 – 0.7730 = 0.9996.

99

Problem G: Heroes of Making Magic III

Problem G: Heroes of Making Magic III
I’m strolling on sunshine, yeah-ah! And don’t it feel good!
Well, it certainly feels good for our Heroes of Making Magic, who are casually walking on a one-directional road, fighting
imps. Imps are weak and feeble creatures and they are not good at much. However, Heroes enjoy fighting them. For fun, if
nothing else.
Our Hero, Ignatius, simply adores imps. He is observing a line of imps, represented as a zero-indexed array of integers 𝐴𝐴[]
of length 𝑁𝑁, where 𝐴𝐴[𝑖𝑖] denotes the number of imps at the 𝑖𝑖𝑡𝑡ℎ position. Sometimes, imps can appear out of nowhere.
When heroes fight imps, they select a segment of the line, start at one end of the segment, and finish on the other end,
without ever exiting the segment. They can move exactly one cell left or right from their current position and when they
do so, they defeat one imp on the cell that they moved to, so, the number of imps on that cell decreases by one. This also
applies when heroes appear at one end of the segment, at the beginning of their walk.
Their goal is to defeat all imps on the segment, without ever moving to an empty cell in it (without imps), since they
would get bored. Since Ignatius loves imps, he doesn’t really want to fight them, so no imps are harmed during the events
of this task. However, he would like you to tell him whether it would be possible for him to clear a certain segment of
imps in the abovementioned way if he wanted to.
You are given 𝑄𝑄 queries, which have two types:

1. a b k - denotes that 𝑘𝑘 imps appear at each cell from the interval [𝑎𝑎, 𝑏𝑏]
2. a b - asks whether Ignatius could defeat all imps in the interval [𝑎𝑎, 𝑏𝑏] in the way described above

Input:
The first line contains a single integer, 𝑁𝑁, the length of 𝐴𝐴. The following line contains 𝑁𝑁 integers, 𝐴𝐴[𝑖𝑖], the initial
number of imps in each cell. The third line contains a single integer 𝑄𝑄, the number of queries. The remaining 𝑄𝑄
lines contain one query each, with 𝑎𝑎, 𝑏𝑏 and 𝑘𝑘.

Output:
For each second type of query output 1 if it is possible to clear the segment, and 0 if it is not.

Constraints:
• 1 ≤ N ≤ 200,000
• 1 ≤ Q ≤ 300,000
• 0 ≤ A[i] ≤ 5,000
• 0 ≤ a ≤ b < N
• 0 ≤ k ≤ 5,000

100

Problem G: Heroes of Making Magic III

Problem G: Heroes of Making Magic III
I’m strolling on sunshine, yeah-ah! And don’t it feel good!
Well, it certainly feels good for our Heroes of Making Magic, who are casually walking on a one-directional road, fighting
imps. Imps are weak and feeble creatures and they are not good at much. However, Heroes enjoy fighting them. For fun, if
nothing else.
Our Hero, Ignatius, simply adores imps. He is observing a line of imps, represented as a zero-indexed array of integers 𝐴𝐴[]
of length 𝑁𝑁, where 𝐴𝐴[𝑖𝑖] denotes the number of imps at the 𝑖𝑖𝑡𝑡ℎ position. Sometimes, imps can appear out of nowhere.
When heroes fight imps, they select a segment of the line, start at one end of the segment, and finish on the other end,
without ever exiting the segment. They can move exactly one cell left or right from their current position and when they
do so, they defeat one imp on the cell that they moved to, so, the number of imps on that cell decreases by one. This also
applies when heroes appear at one end of the segment, at the beginning of their walk.
Their goal is to defeat all imps on the segment, without ever moving to an empty cell in it (without imps), since they
would get bored. Since Ignatius loves imps, he doesn’t really want to fight them, so no imps are harmed during the events
of this task. However, he would like you to tell him whether it would be possible for him to clear a certain segment of
imps in the abovementioned way if he wanted to.
You are given 𝑄𝑄 queries, which have two types:

1. a b k - denotes that 𝑘𝑘 imps appear at each cell from the interval [𝑎𝑎, 𝑏𝑏]
2. a b - asks whether Ignatius could defeat all imps in the interval [𝑎𝑎, 𝑏𝑏] in the way described above

Input:
The first line contains a single integer, 𝑁𝑁, the length of 𝐴𝐴. The following line contains 𝑁𝑁 integers, 𝐴𝐴[𝑖𝑖], the initial
number of imps in each cell. The third line contains a single integer 𝑄𝑄, the number of queries. The remaining 𝑄𝑄
lines contain one query each, with 𝑎𝑎, 𝑏𝑏 and 𝑘𝑘.

Output:
For each second type of query output 1 if it is possible to clear the segment, and 0 if it is not.

Constraints:
• 1 ≤ N ≤ 200,000
• 1 ≤ Q ≤ 300,000
• 0 ≤ A[i] ≤ 5,000
• 0 ≤ a ≤ b < N
• 0 ≤ k ≤ 5,000

Problem G: Heroes of Making Magic III

•
Example input:
3
2 2 2
3
2 0 2
1 1 1 1
2 0 2

Example output:
0
1

Explanation:
For the first query, one can easily check that it is indeed impossible to get from the first to the last cell while clearing
everything. After we add 1 to the second position, we can clear the segment, for example by moving in the following way:
0 → 1 → 2 → 1 → 0 → 1 → 2

> Time and memory limit: 5s / 64MB

101

Problem G: Heroes of Making Magic III

Solution and analysis:
For queries of type 2, we are only interested in the elements 𝐴𝐴𝑘𝑘 with 𝑛𝑛 in the interval [𝑖𝑖, 𝑗𝑗], and nothing else. For the sake of
convenience, label those elements as 𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑛𝑛, where 𝑛𝑛 = 𝑗𝑗 − 𝑖𝑖 + 1.
It can be easily seen that in order to clear a segment, we can just move back and forth between positions 0 and 1 until 𝑎𝑎0
becomes 0, move to 1 and alternate between 1 and 2, etc – until we zero out the last element. If we want this procedure to
succeed, several (in)equalities must hold:

• 𝑎𝑎0 ≥ 1 (since we have to decrease the first element of the segment in the first step)
• 𝑎𝑎1 − 𝑎𝑎0 ≥ 0 (after following this procedure, 𝑎𝑎1 is decreased exactly by 𝑎𝑎0, and we end up on 𝑎𝑎1)
• 𝑎𝑎2– (𝑎𝑎1–𝑎𝑎0 + 1) = 𝑎𝑎2–𝑎𝑎1 + 𝑎𝑎0– 1 ≥ 0, or, 𝑎𝑎2–𝑎𝑎1 + 𝑎𝑎0 ≥ 1
• 𝑎𝑎3–𝑎𝑎2 + 𝑎𝑎1–𝑎𝑎0 ≥ 0, …
• In general, 𝑎𝑎𝑚𝑚–𝑎𝑎𝑚𝑚−1 + 𝑎𝑎𝑚𝑚−2 −⋯+ (−1)𝑚𝑚𝑎𝑎0 has to be greater or equal than 0, if 𝑚𝑚 is odd, and 1, if 𝑚𝑚 is even

Equivalently, if we define a new sequence 𝑑𝑑’, such that 𝑑𝑑’0 = 𝑎𝑎0, and 𝑑𝑑’𝑚𝑚 = 𝑎𝑎𝑚𝑚–𝑑𝑑’𝑚𝑚−1, these inequalities are equivalent to
stating that 𝑑𝑑’0,𝑑𝑑’2,𝑑𝑑’4, … ≥ 1 and 𝑑𝑑’1,𝑑𝑑’3,𝑑𝑑’5, … ≥ 0.
Of course, we do not have to store the 𝑑𝑑 array for each pair of indices 𝑖𝑖, 𝑗𝑗, but it is enough to calculate it once, for the entire
initial array 𝐴𝐴. Then, we can calculate the appropriate values of 𝑑𝑑’𝑘𝑘 for any interval [𝑖𝑖, 𝑗𝑗] (𝑘𝑘 is the zero-based relative position
of an element inside the segment): Let 𝑐𝑐 = 𝑑𝑑𝑖𝑖−1. Then,

• For even values of 𝑘𝑘, 𝑑𝑑’𝑘𝑘 = 𝑐𝑐 + 𝑑𝑑𝑖𝑖+𝑘𝑘
• For odd values of 𝑘𝑘, 𝑑𝑑’𝑘𝑘 = 𝑑𝑑𝑖𝑖+𝑘𝑘– 𝑐𝑐

Now we only need a way to maintain the array 𝑑𝑑 after updates of the form „1 𝑖𝑖 𝑗𝑗 𝑣𝑣“. Fortunately, we can see that this array is
updated in a very regular way:

• Elements on even positions inside the interval [𝑖𝑖, 𝑗𝑗] are increased by 𝑣𝑣
• If 𝑗𝑗 − 𝑖𝑖 is even, elements on positions 𝑗𝑗 + 1, 𝑗𝑗 + 3, 𝑗𝑗 + 5, … are decreased by 𝑣𝑣, and elements on positions 𝑗𝑗 + 2, 𝑗𝑗 +

4, 𝑗𝑗 + 6, … are increased by 𝑣𝑣
All of this can be derived from our definition of 𝑑𝑑.
Both of these queries can be efficiently implemented using a lazy-propagation segment tree, where each internal node stores
two numbers, the minimal of its odd- and even-indexed leaves.
Using the approach described above, we arrive at a solution with the complexity of 𝑂𝑂(𝑞𝑞 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛).

102

Problem G: Heroes of Making Magic III

Solution and analysis:
For queries of type 2, we are only interested in the elements 𝐴𝐴𝑘𝑘 with 𝑛𝑛 in the interval [𝑖𝑖, 𝑗𝑗], and nothing else. For the sake of
convenience, label those elements as 𝑎𝑎0,𝑎𝑎1, … ,𝑎𝑎𝑛𝑛, where 𝑛𝑛 = 𝑗𝑗 − 𝑖𝑖 + 1.
It can be easily seen that in order to clear a segment, we can just move back and forth between positions 0 and 1 until 𝑎𝑎0
becomes 0, move to 1 and alternate between 1 and 2, etc – until we zero out the last element. If we want this procedure to
succeed, several (in)equalities must hold:

• 𝑎𝑎0 ≥ 1 (since we have to decrease the first element of the segment in the first step)
• 𝑎𝑎1 − 𝑎𝑎0 ≥ 0 (after following this procedure, 𝑎𝑎1 is decreased exactly by 𝑎𝑎0, and we end up on 𝑎𝑎1)
• 𝑎𝑎2– (𝑎𝑎1–𝑎𝑎0 + 1) = 𝑎𝑎2–𝑎𝑎1 + 𝑎𝑎0– 1 ≥ 0, or, 𝑎𝑎2–𝑎𝑎1 + 𝑎𝑎0 ≥ 1
• 𝑎𝑎3–𝑎𝑎2 + 𝑎𝑎1–𝑎𝑎0 ≥ 0, …
• In general, 𝑎𝑎𝑚𝑚–𝑎𝑎𝑚𝑚−1 + 𝑎𝑎𝑚𝑚−2 −⋯+ (−1)𝑚𝑚𝑎𝑎0 has to be greater or equal than 0, if 𝑚𝑚 is odd, and 1, if 𝑚𝑚 is even

Equivalently, if we define a new sequence 𝑑𝑑’, such that 𝑑𝑑’0 = 𝑎𝑎0, and 𝑑𝑑’𝑚𝑚 = 𝑎𝑎𝑚𝑚–𝑑𝑑’𝑚𝑚−1, these inequalities are equivalent to
stating that 𝑑𝑑’0,𝑑𝑑’2,𝑑𝑑’4, … ≥ 1 and 𝑑𝑑’1,𝑑𝑑’3,𝑑𝑑’5, … ≥ 0.
Of course, we do not have to store the 𝑑𝑑 array for each pair of indices 𝑖𝑖, 𝑗𝑗, but it is enough to calculate it once, for the entire
initial array 𝐴𝐴. Then, we can calculate the appropriate values of 𝑑𝑑’𝑘𝑘 for any interval [𝑖𝑖, 𝑗𝑗] (𝑘𝑘 is the zero-based relative position
of an element inside the segment): Let 𝑐𝑐 = 𝑑𝑑𝑖𝑖−1. Then,

• For even values of 𝑘𝑘, 𝑑𝑑’𝑘𝑘 = 𝑐𝑐 + 𝑑𝑑𝑖𝑖+𝑘𝑘
• For odd values of 𝑘𝑘, 𝑑𝑑’𝑘𝑘 = 𝑑𝑑𝑖𝑖+𝑘𝑘– 𝑐𝑐

Now we only need a way to maintain the array 𝑑𝑑 after updates of the form „1 𝑖𝑖 𝑗𝑗 𝑣𝑣“. Fortunately, we can see that this array is
updated in a very regular way:

• Elements on even positions inside the interval [𝑖𝑖, 𝑗𝑗] are increased by 𝑣𝑣
• If 𝑗𝑗 − 𝑖𝑖 is even, elements on positions 𝑗𝑗 + 1, 𝑗𝑗 + 3, 𝑗𝑗 + 5, … are decreased by 𝑣𝑣, and elements on positions 𝑗𝑗 + 2, 𝑗𝑗 +

4, 𝑗𝑗 + 6, … are increased by 𝑣𝑣
All of this can be derived from our definition of 𝑑𝑑.
Both of these queries can be efficiently implemented using a lazy-propagation segment tree, where each internal node stores
two numbers, the minimal of its odd- and even-indexed leaves.
Using the approach described above, we arrive at a solution with the complexity of 𝑂𝑂(𝑞𝑞 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛).

Problem H: Dexterina’s Lab

Problem H: Dexterina’s Lab
Dexterina and Womandark have been arch-rivals since they’ve known each other. Since both are super-intelligent teenage
girls, they’ve always been trying to solve their disputes in a peaceful and nonviolent way. After god knows how many
different challenges they’ve given to one another, their score is equal and they’re both desperately trying to best the other
in various games of wits. This time, Dexterina challenged Womandark to a game of Nim.
Nim is a two-player game in which players take turns removing objects from distinct heaps. On each turn, a player must
remove at least one object, and may remove any number of objects from a single heap. The player to remove the last
object wins.
By their agreement, the sizes of piles are selected randomly from the range [0,𝑋𝑋]. Each pile's size is taken from the same
probability distribution.
Womandark is coming up with a brand new and evil idea on how to thwart Dexterina’s plans, so she hasn’t got much
spare time. She, however, offered you some tips on looking fabulous in exchange for helping her win in Nim. Your task is
to tell her what is the probability that the first player to play wins, given the rules as above and assuming that both players
play optimally.

Input:
The first line of input contains 2 integers: 𝑁𝑁 and 𝑋𝑋. The second line contains 𝑋𝑋 + 1 real numbers, given to 6 decimal places
each: 𝑃𝑃(0), … ,𝑃𝑃(𝑋𝑋).

Output:
Output a single real number, the probability that the first player wins. The answer will be judged as correct if it differs from
the correct answer by at most 10−6.

Constraints:
• 1 ≤ N ≤ 109
• 1 ≤ X ≤ 100

Example input:
2 2
0.5 0.25 0.25

Example output:
0.625

Explanation:
The correct answer is exactly 0.625. The checker will also accept, for example, outputs like 0.625000, 0.625001 and
0.625000000.

> Time and memory limit: 0.5s / 256MB

103

Problem H: Dexterina’s Lab

Solution and analysis:

Dynamic programming – 𝓞𝓞(𝒙𝒙𝒙𝒙𝟐𝟐)

A well-known result from a game theory states that the winning player of a game of Nim is determined only by the bitwise
𝑋𝑋𝑋𝑋𝑅𝑅 of the piles’ sizes. The first player has a winning strategy if (and only if) this value is not zero.
Let 𝑃𝑃i be the probability that a pile contains 𝑖𝑖 objects. Define 𝑑𝑑𝑚𝑚,𝑥𝑥 as the probability that the bitwise 𝑋𝑋𝑋𝑋𝑅𝑅 of 𝑚𝑚 random sizes
is equal to 𝑥𝑥. The values of 𝑑𝑑 can be expressed with the recurrence relation

𝑑𝑑𝑚𝑚,𝑥𝑥 =

{

1 if 𝑚𝑚 = 0 ∧ 𝑥𝑥 = 0
0 if 𝑚𝑚 = 0 ∧ 𝑥𝑥 ≠ 0

∑𝑑𝑑𝑚𝑚−1,𝑖𝑖𝑃𝑃𝑖𝑖⊕𝑥𝑥
𝑁𝑁

𝑖𝑖=0
 otherwise

where 𝑁𝑁 is the maximal possible value of the 𝑋𝑋𝑋𝑋𝑅𝑅 (one less than the first power of 2 greater than the maximal pile size 𝑛𝑛)
and ⊕ the bitwise 𝑋𝑋𝑋𝑋𝑅𝑅 operator.
The probability that the second player wins is 𝑑𝑑𝑛𝑛,0. Because the first player wins if the second does not, we can calculate the
values of 𝑑𝑑 in 𝒪𝒪(𝑥𝑥𝑛𝑛2) and output 1− 𝑑𝑑𝑛𝑛,0.

Matrix exponentiation – 𝓞𝓞(𝒙𝒙𝟑𝟑 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙)

Let 𝐷𝐷𝑖𝑖 be the vector (𝑑𝑑𝑖𝑖,0 𝑑𝑑𝑖𝑖,1 ⋯ 𝑑𝑑𝑖𝑖,𝑁𝑁)𝑇𝑇. The transformation that produces 𝐷𝐷𝑖𝑖+1 from 𝐷𝐷𝑖𝑖 is linear, and can therefore be
expressed as 𝐷𝐷𝑖𝑖+1 = 𝑀𝑀𝐷𝐷𝑖𝑖 , where 𝑀𝑀 is a matrix given by 𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑃𝑃𝑖𝑖⊕𝑗𝑗 .
Since the matrix multiplication is associative, 𝐷𝐷𝑛𝑛 = 𝑀𝑀𝑛𝑛𝐷𝐷0 we can calculate 𝑀𝑀𝑛𝑛 using 𝒪𝒪(𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) matrix multiplications, for a
total complexity to calculate 𝐷𝐷𝑛𝑛 (which contains the solution 𝑑𝑑𝑛𝑛,0) of 𝒪𝒪(𝑥𝑥3 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛).

This problem can also be solved in:

• Vector exponentiation – 𝓞𝓞(𝒙𝒙𝟐𝟐 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙)
• Faster multiplication – 𝓞𝓞(𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙)
• Even faster multiplication – 𝓞𝓞(𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙+ 𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙)
• But 𝓞𝓞(𝒙𝒙𝟑𝟑 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙) is enough to get 𝐴𝐴𝐴𝐴.

104

Problem H: Dexterina’s Lab

Solution and analysis:

Dynamic programming – 𝓞𝓞(𝒙𝒙𝒙𝒙𝟐𝟐)

A well-known result from a game theory states that the winning player of a game of Nim is determined only by the bitwise
𝑋𝑋𝑋𝑋𝑅𝑅 of the piles’ sizes. The first player has a winning strategy if (and only if) this value is not zero.
Let 𝑃𝑃i be the probability that a pile contains 𝑖𝑖 objects. Define 𝑑𝑑𝑚𝑚,𝑥𝑥 as the probability that the bitwise 𝑋𝑋𝑋𝑋𝑅𝑅 of 𝑚𝑚 random sizes
is equal to 𝑥𝑥. The values of 𝑑𝑑 can be expressed with the recurrence relation

𝑑𝑑𝑚𝑚,𝑥𝑥 =

{

1 if 𝑚𝑚 = 0 ∧ 𝑥𝑥 = 0
0 if 𝑚𝑚 = 0 ∧ 𝑥𝑥 ≠ 0

∑𝑑𝑑𝑚𝑚−1,𝑖𝑖𝑃𝑃𝑖𝑖⊕𝑥𝑥
𝑁𝑁

𝑖𝑖=0
 otherwise

where 𝑁𝑁 is the maximal possible value of the 𝑋𝑋𝑋𝑋𝑅𝑅 (one less than the first power of 2 greater than the maximal pile size 𝑛𝑛)
and ⊕ the bitwise 𝑋𝑋𝑋𝑋𝑅𝑅 operator.
The probability that the second player wins is 𝑑𝑑𝑛𝑛,0. Because the first player wins if the second does not, we can calculate the
values of 𝑑𝑑 in 𝒪𝒪(𝑥𝑥𝑛𝑛2) and output 1 − 𝑑𝑑𝑛𝑛,0.

Matrix exponentiation – 𝓞𝓞(𝒙𝒙𝟑𝟑 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙)

Let 𝐷𝐷𝑖𝑖 be the vector (𝑑𝑑𝑖𝑖,0 𝑑𝑑𝑖𝑖,1 ⋯ 𝑑𝑑𝑖𝑖,𝑁𝑁)𝑇𝑇. The transformation that produces 𝐷𝐷𝑖𝑖+1 from 𝐷𝐷𝑖𝑖 is linear, and can therefore be
expressed as 𝐷𝐷𝑖𝑖+1 = 𝑀𝑀𝐷𝐷𝑖𝑖 , where 𝑀𝑀 is a matrix given by 𝑀𝑀𝑖𝑖,𝑗𝑗 = 𝑃𝑃𝑖𝑖⊕𝑗𝑗 .
Since the matrix multiplication is associative, 𝐷𝐷𝑛𝑛 = 𝑀𝑀𝑛𝑛𝐷𝐷0 we can calculate 𝑀𝑀𝑛𝑛 using 𝒪𝒪(𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) matrix multiplications, for a
total complexity to calculate 𝐷𝐷𝑛𝑛 (which contains the solution 𝑑𝑑𝑛𝑛,0) of 𝒪𝒪(𝑥𝑥3 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛).

This problem can also be solved in:

• Vector exponentiation – 𝓞𝓞(𝒙𝒙𝟐𝟐 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙)
• Faster multiplication – 𝓞𝓞(𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙)
• Even faster multiplication – 𝓞𝓞(𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙+ 𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙)
• But 𝓞𝓞(𝒙𝒙𝟑𝟑 𝒍𝒍𝒍𝒍𝒍𝒍𝒙𝒙) is enough to get 𝐴𝐴𝐴𝐴.

Problem I: R3D3’s summer adventure

Problem I: R3D3’s summer adventure
𝑅𝑅3𝐷𝐷3 spent some time on an internship in MDCS. After earning enough money, he decided to go on a holiday
somewhere far, far away. He enjoyed sun tanning, drinking alcohol-free cocktails and going to concerts of popular local
bands. While listening to “The White Buttons” and their hit song “Dacan the Baker”, he met another robot for whom he
was sure was the love of his life. Well, his summer, at least.
Anyway, 𝑅𝑅3𝐷𝐷3 was too shy to approach his potential soulmate, so he decided to write her a love letter. However, he
stumbled upon a problem. Due to a terrorist threat, the Intergalactic Space Police was monitoring all letters sent in the
area. Thus, R3D3 decided to invent his own alphabet, for which he was sure his love would be able to decipher.
There are 𝑁𝑁 letters in 𝑅𝑅3𝐷𝐷3’s alphabet, and he wants to represent each letter as a sequence of 0𝑠𝑠 and 1𝑠𝑠, so that no
letter’s sequence is a prefix of another one’s sequence. Since the Intergalactic Space Communications Service has lately
introduced a tax for invented alphabets, R3D3 must pay a certain amount of money for each bit in his alphabet’s code. He
is too lovestruck to think clearly, so he asked you for help.
Given the costs 𝐶𝐶0 and 𝐶𝐶1 for each 0 and 1 in 𝑅𝑅3𝐷𝐷3’s alphabet, respectively, you should come up with a coding for the
alphabet (with properties as above) with minimal total cost.

Input:
The first line of input contains 3 integers:
N - the number of letters in the alphabet
C0- cost of 0s
C1 - cost of 1s

Output:
Output a single number - the minimal cost of the whole alphabet.

Constraints:
• 2 ≤ N ≤ 108
• 0 ≤ C0 ≤ 108
• 0 ≤ C1 ≤ 108

Example input:
4 1 2

Example output:
12

Explanation:
The alphabet is "00", "01", "10", "11". So minimal total cost is 12.

> Time and memory limit: 1s / 256 MB

105

Problem I: R3D3’s summer adventure

Solution and analysis:
Basically, the problem can be formulated in the following way: Let’s build a binary tree with edges labeled ‘0’ and ‘1’with
𝑁𝑁 leaves so that the sum of costs of paths to all leaves is minimal. This tree is also called ‘Varn code tree’*. Varn code tree
is generated as follows. Start with a tree consisting of a root node from which descend 2 leaf nodes, the costs associated
with the corresponding code symbols. Select the lowest cost node, let c be its cost, and let descend from it 2 leaf nodes
𝑐𝑐 + 𝑐𝑐(0) and 𝑐𝑐 + 𝑐𝑐(1). Continue, by selecting the lowest cost node from the new tree, until 𝑁𝑁 leaf nodes have been
created.
This greedy approach can be done in 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) if we actually construct a tree. Basically, we do the following thing 𝑁𝑁
times: out of all codes we have selected the lowest, deleted it and created 2 new codes by adding ‘0’ and ‘1’ to the one we
have deleted. If all of this was done with some standard data structure this is 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁).
If we actually don’t need the tree and the coding itself, just the final cost, we can improve to 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁2(𝑁𝑁)). Let’s define an
array 𝐹𝐹 to represent this tree, where 𝐹𝐹[𝑖𝑖] will be a number of paths to the leaves in this tree with cost equal to 𝑖𝑖. While
sum of all values in 𝐹𝐹 is lower than 𝑁𝑁 we do the following procedure: find an element with lowest ‘𝑖𝑖’ where 𝐹𝐹[𝑖𝑖] > 0. Then,
𝐹𝐹[𝑖𝑖 + 𝑐𝑐(0)]+= 𝐹𝐹[𝑖𝑖]; 𝐹𝐹[𝑖𝑖 + 𝑐𝑐(1)]+= 𝐹𝐹[𝑖𝑖]; 𝐹𝐹[𝑖𝑖] = 0. Basically, we did the same thing as in the previous algorithm, just
instead of adding 2 edges to the leaf with the lowest cost we did that to all of the leafs that have the lowest cost in the
tree. Numbers in this array rise at least as fast as Fibonacci numbers, just the array will be sparse. So, if instead of array we
use some data structure like a map, we get 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁2(𝑁𝑁)) complexity.

106

Problem I: R3D3’s summer adventure

Solution and analysis:
Basically, the problem can be formulated in the following way: Let’s build a binary tree with edges labeled ‘0’ and ‘1’with
𝑁𝑁 leaves so that the sum of costs of paths to all leaves is minimal. This tree is also called ‘Varn code tree’*. Varn code tree
is generated as follows. Start with a tree consisting of a root node from which descend 2 leaf nodes, the costs associated
with the corresponding code symbols. Select the lowest cost node, let c be its cost, and let descend from it 2 leaf nodes
𝑐𝑐 + 𝑐𝑐(0) and 𝑐𝑐 + 𝑐𝑐(1). Continue, by selecting the lowest cost node from the new tree, until 𝑁𝑁 leaf nodes have been
created.
This greedy approach can be done in 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) if we actually construct a tree. Basically, we do the following thing 𝑁𝑁
times: out of all codes we have selected the lowest, deleted it and created 2 new codes by adding ‘0’ and ‘1’ to the one we
have deleted. If all of this was done with some standard data structure this is 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁).
If we actually don’t need the tree and the coding itself, just the final cost, we can improve to 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁2(𝑁𝑁)). Let’s define an
array 𝐹𝐹 to represent this tree, where 𝐹𝐹[𝑖𝑖] will be a number of paths to the leaves in this tree with cost equal to 𝑖𝑖. While
sum of all values in 𝐹𝐹 is lower than 𝑁𝑁 we do the following procedure: find an element with lowest ‘𝑖𝑖’ where 𝐹𝐹[𝑖𝑖] > 0. Then,
𝐹𝐹[𝑖𝑖 + 𝑐𝑐(0)]+= 𝐹𝐹[𝑖𝑖]; 𝐹𝐹[𝑖𝑖 + 𝑐𝑐(1)]+= 𝐹𝐹[𝑖𝑖]; 𝐹𝐹[𝑖𝑖] = 0. Basically, we did the same thing as in the previous algorithm, just
instead of adding 2 edges to the leaf with the lowest cost we did that to all of the leafs that have the lowest cost in the
tree. Numbers in this array rise at least as fast as Fibonacci numbers, just the array will be sparse. So, if instead of array we
use some data structure like a map, we get 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁2(𝑁𝑁)) complexity.

Problem A: Digits

bubble cup X

Problem A: Digits

Problem A: Digits
John gave Jack a very hard problem. He wrote a very big positive integer 𝐴𝐴0 on a piece of paper. The number is less than
10200000. In each step, Jack is allowed to put '+' signs in between some of the digits (maybe none) of the current number
and calculate the sum of the expression. He can perform the same procedure on that sum and so on. The resulting sums
can be labeled respectively by 𝐴𝐴1,𝐴𝐴2 etc. His task is to get to a single digit number.
The problem is that there is not much blank space on the paper. There are only three lines of space, so he can't perform
more than three steps. Since he wants to fill up the paper completely, he will perform exactly three steps.
Jack must not add leading zeros to intermediate results, but he can put '+' signs in front of digit 0. For example, if the
current number is 1000100, 10 + 001 + 00 is a valid step, resulting in number 11.

Input:
In the first line, a positive integer 𝑁𝑁, representing the number of digits of number 𝐴𝐴0.
In the second line, a string of length 𝑁𝑁 representing number 𝐴𝐴0. Each character is a digit. There will be no leading zeros.

Output:
Output exactly three lines, the steps Jack needs to perform to solve the problem. You can output any sequence of steps
which results in a single digit number (and is logically consistent).

Constraints:
• 1 ≤ N ≤ 200,000

Example input 1:
2
10

Example output 1:
10
1+0
1

Example input 2:
3
992

Example output 2:
99+2
1+01
2

Example input 3:
4
1234

Example output 3:
123+4
1+2+7
1+0

108

Problem A: Digits

Problem A: Digits
John gave Jack a very hard problem. He wrote a very big positive integer 𝐴𝐴0 on a piece of paper. The number is less than
10200000. In each step, Jack is allowed to put '+' signs in between some of the digits (maybe none) of the current number
and calculate the sum of the expression. He can perform the same procedure on that sum and so on. The resulting sums
can be labeled respectively by 𝐴𝐴1,𝐴𝐴2 etc. His task is to get to a single digit number.
The problem is that there is not much blank space on the paper. There are only three lines of space, so he can't perform
more than three steps. Since he wants to fill up the paper completely, he will perform exactly three steps.
Jack must not add leading zeros to intermediate results, but he can put '+' signs in front of digit 0. For example, if the
current number is 1000100, 10 + 001 + 00 is a valid step, resulting in number 11.

Input:
In the first line, a positive integer 𝑁𝑁, representing the number of digits of number 𝐴𝐴0.
In the second line, a string of length 𝑁𝑁 representing number 𝐴𝐴0. Each character is a digit. There will be no leading zeros.

Output:
Output exactly three lines, the steps Jack needs to perform to solve the problem. You can output any sequence of steps
which results in a single digit number (and is logically consistent).

Constraints:
• 1 ≤ N ≤ 200,000

Example input 1:
2
10

Example output 1:
10
1+0
1

Example input 2:
3
992

Example output 2:
99+2
1+01
2

Example input 3:
4
1234

Example output 3:
123+4
1+2+7
1+0

Problem A: Digits

Explanation:

Example 1: In the first step, we use zero '+' signs, so 𝐴𝐴1 = 10. In the second step, we place a '+' sign between 1 and 0,
so 𝐴𝐴2 = 1 + 0 = 1. In the third step, we don't need to (and we can't) put any '+' signs, so we get 𝐴𝐴3 = 1.

Example 2: In the first step, we only put a '+' between the last two digits, so we get 𝐴𝐴1 = 99 + 2 = 101. In the second
step, we place the only '+' sign between the first and the second digit, so 𝐴𝐴2 = 1 + 01 = 1 + 1 = 2. In the third step, we
don't need to (and we can't) put any '+' signs, so we get 𝐴𝐴3 = 2.

Example 3: In the first step, we use a '+' sign between the last two digits, so 𝐴𝐴1 = 123 + 4 = 127. On the second step,
we place a '+' sign between every two digits, so 𝐴𝐴2 = 1 + 2 + 7 = 10. In the third step, we place a '+' sign between 1 and
0, so 𝐴𝐴3 = 1 + 0 = 1.

> Time and memory limit: 1s / 256MB

109

Problem A: Digits

Solution and analysis:
Let 𝑑𝑑𝑑𝑑(𝑥𝑥) be the sum of digits of the number 𝑥𝑥.
Notice that if 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≤ 198, then 𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝐴𝐴0))) is a single digit number, therefore we have solved the case 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≤
198.
After a little more thinking, we can extend it to 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≤ 288, because 289 is the smallest number which can't be reduced to
a single digit number in at most two steps. This is because number 199 can be transformed to single digit in 2 steps by using
following transformations 1 + 99, 1 + 0 + 0. Now we know how to solve 𝑑𝑑𝑑𝑑(𝐴𝐴0) <= 288. Now we will solve 288 ≤ 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≤
 999.
Let 𝐴𝐴0 = 𝑎𝑎0𝑎𝑎1 …𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛 be the decimal representation of 𝐴𝐴0.
Consider:

𝑋𝑋 = 𝑎𝑎0𝑎𝑎1 + 𝑎𝑎2𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛
𝑌𝑌 = 𝑎𝑎0 + 𝑎𝑎1𝑎𝑎2 + … + 𝑎𝑎𝑛𝑛−2𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛

(this is for an odd 𝑛𝑛, the following results would be the same with an even 𝑛𝑛).
Now look at: 𝑋𝑋 + 𝑌𝑌 = 11𝑑𝑑𝑑𝑑(𝐴𝐴0)– 9𝑎𝑎𝑛𝑛. (this is easy to be seen by addition).
Since 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≥ 288, we have 𝑋𝑋 + 𝑌𝑌 > 10𝑑𝑑𝑑𝑑(𝐴𝐴0). Thus, we trivially conclude that for example: 𝑋𝑋 > 5𝑑𝑑𝑑𝑑(𝐴𝐴0).
That means that 𝑋𝑋 > 1000. Now look at the following sequence of numbers:

𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,
𝑎𝑎0𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,
𝑎𝑎0𝑎𝑎1 + 𝑎𝑎2𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,

…,
𝑋𝑋 = 𝑎𝑎0𝑎𝑎1 + 𝑎𝑎2𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛 .

It is increasing, and the first element has 3 digits, the last has at least 4, so the number of digits has increased at some point.
Since the numbers in the sequence are increasing by at most 81 (trivial check), the sequence element, when digit skipping
occurred, is at most 1080. Thus, our first step is to put '+' signs as they are in that sequence element. After that, we apply
𝑑𝑑𝑑𝑑() two more times and we will be done (trivial check).
Now we solve 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≥ 1000.
Consider:

𝑋𝑋 = 𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎𝑛𝑛−2𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛
𝑌𝑌 = 𝑎𝑎0 + 𝑎𝑎1𝑎𝑎2𝑎𝑎3 + 𝑎𝑎4𝑎𝑎5𝑎𝑎6 + … + 𝑎𝑎𝑛𝑛−4𝑎𝑎𝑛𝑛−3𝑎𝑎𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛
𝑍𝑍 = 𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2𝑎𝑎3𝑎𝑎4 + 𝑎𝑎5𝑎𝑎6𝑎𝑎7 + … + 𝑎𝑎𝑛𝑛−3𝑎𝑎𝑛𝑛−2𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛.

(this is for the 𝑛𝑛 of the form 𝑛𝑛 = 3𝑘𝑘 + 2, the following results would be the same with the other 𝑛𝑛)
As before, we can easily see that 𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍 > 98𝑑𝑑𝑑𝑑(𝐴𝐴0) (90𝑑𝑑𝑑𝑑(𝐴𝐴0) is enough), so, for example, 𝑋𝑋 > 30𝑑𝑑𝑑𝑑(𝐴𝐴0).
Now look at the following sequence of numbers:

𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,
𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,

𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,
… ,
𝑋𝑋 = 𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎𝑛𝑛−2𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛

It is increasing and since the first number is 𝑑𝑑𝑑𝑑(𝐴𝐴0) and the last one is at least 30𝑑𝑑𝑑𝑑(𝐴𝐴0), the digit skipping occurred
somewhere.

110

Problem A: Digits

Solution and analysis:
Let 𝑑𝑑𝑑𝑑(𝑥𝑥) be the sum of digits of the number 𝑥𝑥.
Notice that if 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≤ 198, then 𝑑𝑑𝑑𝑑 (𝑑𝑑𝑑𝑑(𝑑𝑑𝑑𝑑(𝐴𝐴0))) is a single digit number, therefore we have solved the case 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≤
198.
After a little more thinking, we can extend it to 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≤ 288, because 289 is the smallest number which can't be reduced to
a single digit number in at most two steps. This is because number 199 can be transformed to single digit in 2 steps by using
following transformations 1 + 99, 1 + 0 + 0. Now we know how to solve 𝑑𝑑𝑑𝑑(𝐴𝐴0) <= 288. Now we will solve 288 ≤ 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≤
 999.
Let 𝐴𝐴0 = 𝑎𝑎0𝑎𝑎1 …𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛 be the decimal representation of 𝐴𝐴0.
Consider:

𝑋𝑋 = 𝑎𝑎0𝑎𝑎1 + 𝑎𝑎2𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛
𝑌𝑌 = 𝑎𝑎0 + 𝑎𝑎1𝑎𝑎2 + … + 𝑎𝑎𝑛𝑛−2𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛

(this is for an odd 𝑛𝑛, the following results would be the same with an even 𝑛𝑛).
Now look at: 𝑋𝑋 + 𝑌𝑌 = 11𝑑𝑑𝑑𝑑(𝐴𝐴0)– 9𝑎𝑎𝑛𝑛. (this is easy to be seen by addition).
Since 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≥ 288, we have 𝑋𝑋 + 𝑌𝑌 > 10𝑑𝑑𝑑𝑑(𝐴𝐴0). Thus, we trivially conclude that for example: 𝑋𝑋 > 5𝑑𝑑𝑑𝑑(𝐴𝐴0).
That means that 𝑋𝑋 > 1000. Now look at the following sequence of numbers:

𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,
𝑎𝑎0𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,
𝑎𝑎0𝑎𝑎1 + 𝑎𝑎2𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,

…,
𝑋𝑋 = 𝑎𝑎0𝑎𝑎1 + 𝑎𝑎2𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛 .

It is increasing, and the first element has 3 digits, the last has at least 4, so the number of digits has increased at some point.
Since the numbers in the sequence are increasing by at most 81 (trivial check), the sequence element, when digit skipping
occurred, is at most 1080. Thus, our first step is to put '+' signs as they are in that sequence element. After that, we apply
𝑑𝑑𝑑𝑑() two more times and we will be done (trivial check).
Now we solve 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≥ 1000.
Consider:

𝑋𝑋 = 𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎𝑛𝑛−2𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛
𝑌𝑌 = 𝑎𝑎0 + 𝑎𝑎1𝑎𝑎2𝑎𝑎3 + 𝑎𝑎4𝑎𝑎5𝑎𝑎6 + … + 𝑎𝑎𝑛𝑛−4𝑎𝑎𝑛𝑛−3𝑎𝑎𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛
𝑍𝑍 = 𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2𝑎𝑎3𝑎𝑎4 + 𝑎𝑎5𝑎𝑎6𝑎𝑎7 + … + 𝑎𝑎𝑛𝑛−3𝑎𝑎𝑛𝑛−2𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛.

(this is for the 𝑛𝑛 of the form 𝑛𝑛 = 3𝑘𝑘 + 2, the following results would be the same with the other 𝑛𝑛)
As before, we can easily see that 𝑋𝑋 + 𝑌𝑌 + 𝑍𝑍 > 98𝑑𝑑𝑑𝑑(𝐴𝐴0) (90𝑑𝑑𝑑𝑑(𝐴𝐴0) is enough), so, for example, 𝑋𝑋 > 30𝑑𝑑𝑑𝑑(𝐴𝐴0).
Now look at the following sequence of numbers:

𝑎𝑎0 + 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,
𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4 + … + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,

𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛,
… ,
𝑋𝑋 = 𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎𝑛𝑛−2𝑎𝑎𝑛𝑛−1𝑎𝑎𝑛𝑛

It is increasing and since the first number is 𝑑𝑑𝑑𝑑(𝐴𝐴0) and the last one is at least 30𝑑𝑑𝑑𝑑(𝐴𝐴0), the digit skipping occurred
somewhere.

Problem A: Digits

Let 𝑀𝑀 = 𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎3𝑘𝑘𝑎𝑎3𝑘𝑘+1𝑎𝑎3𝑘𝑘+2 + 𝑎𝑎3𝑘𝑘+3 + ⋯ + 𝑎𝑎𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛 be the sequence element right before
the digit skipping occurred. Therefore, it is less than 10𝑑𝑑𝑑𝑑(𝐴𝐴0) and at most 999 away from power of 10. Now we continue by
'steps of two', so the next element is:
𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎3𝑙𝑙𝑎𝑎3𝑘𝑘+1𝑎𝑎3𝑘𝑘+2 + (𝑎𝑎3𝑘𝑘+3𝑎𝑎3𝑘𝑘+4 + 𝑎𝑎3𝑘𝑘+5) + ⋯ + 𝑎𝑎𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛 ,

and the next one:
𝑎𝑎0𝑎𝑎1𝑎𝑎2 + 𝑎𝑎3𝑎𝑎4𝑎𝑎5 + … + 𝑎𝑎3𝑙𝑙𝑎𝑎3𝑘𝑘+1𝑎𝑎3𝑘𝑘+2 + (𝑎𝑎3𝑘𝑘+3𝑎𝑎3𝑘𝑘+4 + 𝑎𝑎3𝑘𝑘+5) + (𝑎𝑎3𝑘𝑘+6𝑎𝑎3𝑘𝑘+7 + 𝑎𝑎3𝑘𝑘+8) + ⋯ + 𝑎𝑎𝑛𝑛−2 + 𝑎𝑎𝑛𝑛−1 + 𝑎𝑎𝑛𝑛 ,

Remember that 𝑀𝑀 < 10𝑑𝑑𝑑𝑑(𝐴𝐴0). Since 𝑋𝑋 > 30𝑑𝑑𝑑𝑑(𝐴𝐴0), if we continued making steps of three, we would increase our number
by at least 20𝑑𝑑𝑑𝑑(𝐴𝐴0) before the end of the procedure. Our steps are steps of two, and each step increases the number by at
least 1/11 of what it would be increased by if we were making steps of three (trivial check). Thus, before the end of our
procedure, we will increase M by more than 𝑑𝑑𝑑𝑑(𝐴𝐴0). Since 𝑑𝑑𝑑𝑑(𝐴𝐴0) ≥ 1000, and remember that 𝑀𝑀 was at most 999 less than
the power of 10, the digit skipping will indeed occur.
We thus reach the similar situation as in the previous case and we know what our first step is. We only need to apply 𝑑𝑑𝑑𝑑()
two more times after that.

111

Problem B: Neural Network Country

Problem B: Neural Network Country
Due to the recent popularity of the Deep learning new countries are starting to look like Neural Networks. That is, the
countries are being built deep with many layers, each layer possibly having many cities. They also have one entry, and one
exit point. There are exactly 𝐿𝐿 layers, each having 𝑁𝑁 cities. Let us look at the two adjacent layers 𝐿𝐿1 and 𝐿𝐿2. Each city from
the layer 𝐿𝐿1 is connected to each city from the layer 𝐿𝐿2 with the travelling cost 𝑐𝑐𝑖𝑖𝑖𝑖 for 𝑖𝑖, 𝑗𝑗 ∈ (1, 2, . . ,𝑁𝑁), and each pair of
adjacent layers has the same cost in between their cities as any other pair (they just stacked the same layers, as usual).
Also, the travelling costs to each city from the layer 𝐿𝐿2 are same for all cities in the 𝐿𝐿1, that is 𝑐𝑐𝑖𝑖𝑖𝑖 is the same for 𝑖𝑖 ∈
(1, 2, . . ,𝑁𝑁), and fixed 𝑗𝑗. Doctor G. needs to speed up his computations for this country so he asks you to find the number
of paths he can take from entry to exit point such that his travelling cost is divisible by given number 𝑀𝑀.

Input:
The first line of input contains 𝑁𝑁 – the number of cities in each layer, 𝐿𝐿 – the number of layers, and 𝑀𝑀. Second, third and
fourth line contain 𝑁𝑁 integers denoting costs from entry point to the first layer, costs between adjacent layers as described
above, and costs from the last layer to the exit point.

Output:
Output a single integer, the number of paths Doctor G. can take which have total cost divisible by 𝑀𝑀, modulo 109 + 7.

Constraints:
• 1 ≤ N ≤106
• 2 ≤ L ≤ 105
• 2 ≤ M ≤ 100
• 0 ≤ costs < M

Example input:
2 3 13
4 6
2 1
3 4

Example output:
2

112

Problem B: Neural Network Country

Problem B: Neural Network Country
Due to the recent popularity of the Deep learning new countries are starting to look like Neural Networks. That is, the
countries are being built deep with many layers, each layer possibly having many cities. They also have one entry, and one
exit point. There are exactly 𝐿𝐿 layers, each having 𝑁𝑁 cities. Let us look at the two adjacent layers 𝐿𝐿1 and 𝐿𝐿2. Each city from
the layer 𝐿𝐿1 is connected to each city from the layer 𝐿𝐿2 with the travelling cost 𝑐𝑐𝑖𝑖𝑖𝑖 for 𝑖𝑖, 𝑗𝑗 ∈ (1, 2, . . ,𝑁𝑁), and each pair of
adjacent layers has the same cost in between their cities as any other pair (they just stacked the same layers, as usual).
Also, the travelling costs to each city from the layer 𝐿𝐿2 are same for all cities in the 𝐿𝐿1, that is 𝑐𝑐𝑖𝑖𝑖𝑖 is the same for 𝑖𝑖 ∈
(1, 2, . . ,𝑁𝑁), and fixed 𝑗𝑗. Doctor G. needs to speed up his computations for this country so he asks you to find the number
of paths he can take from entry to exit point such that his travelling cost is divisible by given number 𝑀𝑀.

Input:
The first line of input contains 𝑁𝑁 – the number of cities in each layer, 𝐿𝐿 – the number of layers, and 𝑀𝑀. Second, third and
fourth line contain 𝑁𝑁 integers denoting costs from entry point to the first layer, costs between adjacent layers as described
above, and costs from the last layer to the exit point.

Output:
Output a single integer, the number of paths Doctor G. can take which have total cost divisible by 𝑀𝑀, modulo 109 + 7.

Constraints:
• 1 ≤ N ≤106
• 2 ≤ L ≤ 105
• 2 ≤ M ≤ 100
• 0 ≤ costs < M

Example input:
2 3 13
4 6
2 1
3 4

Example output:
2

Problem B: Neural Network Country

Explanation:

This is a country with 3 layers, each layer having 2 cities. Paths 6 → 2 → 2 → 3, and 6 → 2 → 1 → 4 are the only paths
having total cost divisible by 13. Notice that input edges for layer cities have the same cost, and that they are same for all
layers.

> Time and memory limit: 2s / 256MB

113

Problem B: Neural Network Country

Solution and analysis:

Let’s ignore constraints for a second and try to solve the problem using a classical dynamic approach. We can easily see that
if we know in how many ways we can reach some layer for every modulo up to 𝑀𝑀, we can simply calculate number of ways
we can reach the next layer for every modulo by iterating over weights in 𝑂𝑂(𝑁𝑁). That means we have matrix 𝐷𝐷𝐷𝐷𝐿𝐿×𝑀𝑀, where
𝐷𝐷𝐷𝐷[𝑖𝑖][𝑗𝑗] is equal to the number of roads up to 𝑖𝑖-th layer whose total cost is equal to 𝑗𝑗 modulo 𝑚𝑚. The transition between the
layers is calculated as follows:

𝐷𝐷𝐷𝐷[𝑖𝑖][𝑗𝑗] = ∑𝐷𝐷𝐷𝐷[𝑖𝑖 − 1][(𝑗𝑗 − 𝑤𝑤[𝑘𝑘]) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀]
𝑁𝑁−1

𝑘𝑘=0
,

where 𝑤𝑤 is a zero-base indexed array of weights between the layers. Given the array of costs between the starting point and
the first layer, 𝑎𝑎, the base is calculated as 𝐷𝐷𝐷𝐷[0][𝑎𝑎[𝑘𝑘]] += 1, for every 𝑘𝑘 from 0 to 𝑁𝑁 − 1. The last layer is a bit tricky. In order
to calculate the final result, we need to know not only 𝐷𝐷𝐷𝐷[𝐿𝐿][0. .𝑁𝑁 − 1], but also which of those roads end in which nodes. We
can achieve that by calculating 𝐷𝐷𝐷𝐷 up to the layer 𝐿𝐿 − 1, and computing the last step manually, by “merging” the costs of the
last two sets of edges, by simply adding 𝑤𝑤[𝑖𝑖] and 𝑏𝑏[𝑖𝑖], where 𝑏𝑏 is the array of edge costs between the last layer and the finish
point, for every 𝑖𝑖 from 0 to 𝑁𝑁 − 1, and outputting the following result modulo 𝑄𝑄:

𝑟𝑟𝑟𝑟𝑟𝑟 = ∑𝐷𝐷𝐷𝐷[𝐿𝐿 − 1][(−𝑤𝑤[𝑖𝑖] − 𝑏𝑏[𝑖𝑖]) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀]
𝑁𝑁−1

𝑖𝑖=0
,

giving the overall time complexity of 𝑂𝑂(𝐿𝐿 ∙ 𝑁𝑁 ∙ 𝑀𝑀), and memory complexity of 𝑂𝑂(𝐿𝐿 ∙ 𝑀𝑀), both of them exceeding the given
limits. Of course, memory is not a problem if we see that we need not to save the whole matrix, but only the last column.
We will reduce time complexity step by step. If we notice that it doesn’t matter in which node we are currently in (except in
the last step), we can speed up the computation by saving the number of occurrences of each 𝑤𝑤[𝑖𝑖] modulo 𝑀𝑀 into an array
𝑛𝑛𝑛𝑛𝑚𝑚[𝑖𝑖]. Now 𝐷𝐷𝐷𝐷 matrix is calculated in 𝑂𝑂(𝐿𝐿 ∙ 𝑀𝑀2) using formula:

𝐷𝐷𝐷𝐷[𝑖𝑖][𝑗𝑗] = ∑𝑛𝑛𝑛𝑛𝑚𝑚[𝑘𝑘] ∙ 𝐷𝐷𝐷𝐷[𝑖𝑖 − 1][(𝑗𝑗 − 𝑘𝑘) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀]
𝑀𝑀−1

𝑘𝑘=0
.

Now, a keen eye can spot multiplication of a matrix and a vector by looking at this formula. Indeed, we can compute a
transition matrix of dimensions 𝑀𝑀 × 𝑀𝑀 which, multiplied by a vector of the current state (number of roads which have the
total cost 𝑖𝑖 = 0. .𝑀𝑀 − 1, modulo 𝑀𝑀 up to some layer), gives us the next state vector, corresponding to the next layer, resulting
in time complexity 𝑂𝑂(𝑀𝑀3 ∙ 𝑙𝑙𝑚𝑚𝑙𝑙 𝐿𝐿), using modular matrix exponentiation. The last layer still has to be treated separately, in
the same way as described before.

114

Problem B: Neural Network Country

Solution and analysis:

Let’s ignore constraints for a second and try to solve the problem using a classical dynamic approach. We can easily see that
if we know in how many ways we can reach some layer for every modulo up to 𝑀𝑀, we can simply calculate number of ways
we can reach the next layer for every modulo by iterating over weights in 𝑂𝑂(𝑁𝑁). That means we have matrix 𝐷𝐷𝐷𝐷𝐿𝐿×𝑀𝑀, where
𝐷𝐷𝐷𝐷[𝑖𝑖][𝑗𝑗] is equal to the number of roads up to 𝑖𝑖-th layer whose total cost is equal to 𝑗𝑗 modulo 𝑚𝑚. The transition between the
layers is calculated as follows:

𝐷𝐷𝐷𝐷[𝑖𝑖][𝑗𝑗] = ∑𝐷𝐷𝐷𝐷[𝑖𝑖 − 1][(𝑗𝑗 − 𝑤𝑤[𝑘𝑘]) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀]
𝑁𝑁−1

𝑘𝑘=0
,

where 𝑤𝑤 is a zero-base indexed array of weights between the layers. Given the array of costs between the starting point and
the first layer, 𝑎𝑎, the base is calculated as 𝐷𝐷𝐷𝐷[0][𝑎𝑎[𝑘𝑘]] += 1, for every 𝑘𝑘 from 0 to 𝑁𝑁 − 1. The last layer is a bit tricky. In order
to calculate the final result, we need to know not only 𝐷𝐷𝐷𝐷[𝐿𝐿][0. .𝑁𝑁 − 1], but also which of those roads end in which nodes. We
can achieve that by calculating 𝐷𝐷𝐷𝐷 up to the layer 𝐿𝐿 − 1, and computing the last step manually, by “merging” the costs of the
last two sets of edges, by simply adding 𝑤𝑤[𝑖𝑖] and 𝑏𝑏[𝑖𝑖], where 𝑏𝑏 is the array of edge costs between the last layer and the finish
point, for every 𝑖𝑖 from 0 to 𝑁𝑁 − 1, and outputting the following result modulo 𝑄𝑄:

𝑟𝑟𝑟𝑟𝑟𝑟 = ∑𝐷𝐷𝐷𝐷[𝐿𝐿 − 1][(−𝑤𝑤[𝑖𝑖] − 𝑏𝑏[𝑖𝑖]) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀]
𝑁𝑁−1

𝑖𝑖=0
,

giving the overall time complexity of 𝑂𝑂(𝐿𝐿 ∙ 𝑁𝑁 ∙ 𝑀𝑀), and memory complexity of 𝑂𝑂(𝐿𝐿 ∙ 𝑀𝑀), both of them exceeding the given
limits. Of course, memory is not a problem if we see that we need not to save the whole matrix, but only the last column.
We will reduce time complexity step by step. If we notice that it doesn’t matter in which node we are currently in (except in
the last step), we can speed up the computation by saving the number of occurrences of each 𝑤𝑤[𝑖𝑖] modulo 𝑀𝑀 into an array
𝑛𝑛𝑛𝑛𝑚𝑚[𝑖𝑖]. Now 𝐷𝐷𝐷𝐷 matrix is calculated in 𝑂𝑂(𝐿𝐿 ∙ 𝑀𝑀2) using formula:

𝐷𝐷𝐷𝐷[𝑖𝑖][𝑗𝑗] = ∑𝑛𝑛𝑛𝑛𝑚𝑚[𝑘𝑘] ∙ 𝐷𝐷𝐷𝐷[𝑖𝑖 − 1][(𝑗𝑗 − 𝑘𝑘) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀]
𝑀𝑀−1

𝑘𝑘=0
.

Now, a keen eye can spot multiplication of a matrix and a vector by looking at this formula. Indeed, we can compute a
transition matrix of dimensions 𝑀𝑀 × 𝑀𝑀 which, multiplied by a vector of the current state (number of roads which have the
total cost 𝑖𝑖 = 0. .𝑀𝑀 − 1, modulo 𝑀𝑀 up to some layer), gives us the next state vector, corresponding to the next layer, resulting
in time complexity 𝑂𝑂(𝑀𝑀3 ∙ 𝑙𝑙𝑚𝑚𝑙𝑙 𝐿𝐿), using modular matrix exponentiation. The last layer still has to be treated separately, in
the same way as described before.

Problem C: Property

Problem C: Property
Bill is a famous mathematician in BubbleLand. Thanks to his revolutionary math discoveries he was able to make enough
money to build a beautiful house. Unfortunately, for not paying property tax on time, court decided to punish Bill by
making him lose a part of his property.
Bill’s property can be observed as a convex regular 2𝑛𝑛-sided polygon 𝐴𝐴0𝐴𝐴1 …𝐴𝐴2𝑛𝑛−1𝐴𝐴2𝑛𝑛, 𝐴𝐴2𝑛𝑛 = 𝐴𝐴0 with sides of the
exactly 1 meter in length.
Court rules for removing part of his property are as follows:
Split every edge 𝐴𝐴𝑘𝑘𝐴𝐴𝑘𝑘+1,𝑘𝑘 = 0. . .2𝑛𝑛 − 1 in 𝑛𝑛 equal parts of size 1𝑛𝑛 with points 𝑃𝑃0,𝑃𝑃1, …𝑃𝑃𝑛𝑛−1
On every edge 𝐴𝐴2𝑘𝑘𝐴𝐴2𝑘𝑘+1, 𝑘𝑘 = 0. . .𝑛𝑛 − 1 court will choose one point 𝐵𝐵2𝑘𝑘 = 𝑃𝑃𝑖𝑖 for some 𝑖𝑖 = 0, … ,𝑛𝑛 − 1 such that
⋃ 𝐵𝐵2𝑖𝑖 = ⋃ 𝑃𝑃𝑖𝑖𝑛𝑛−1

𝑖𝑖=0 𝑛𝑛−1
𝑖𝑖=0

On every edge 𝐴𝐴2𝑘𝑘+1𝐴𝐴2𝑘𝑘+2,𝑘𝑘 = 0. . .𝑛𝑛 − 1 Bill will choose one point 𝐵𝐵2𝑘𝑘+1 = 𝑃𝑃𝑖𝑖 for some 𝑖𝑖 = 0, … ,𝑛𝑛 − 1 such that
⋃ 𝐵𝐵2𝑖𝑖+1 = ⋃ 𝑃𝑃𝑖𝑖𝑛𝑛−1

𝑖𝑖=0 𝑛𝑛−1
𝑖𝑖=0

Bill gets to keep property inside of 2𝑛𝑛-sided polygon 𝐵𝐵0𝐵𝐵1 …𝐵𝐵2𝑛𝑛−1
Luckily, Bill found out all 𝐵𝐵2𝑘𝑘 points the court chose. Even though he is a great mathematician, his house is very big and he
has a hard time calculating. Therefore, he is asking you to help him choose points in order to maximize his property area.

Input:
The first line contains one integer number n representing number of edges of Bill's 2𝑛𝑛-sided polygon house.
The second line contains 𝑛𝑛 distinct integer numbers 𝐵𝐵2𝑘𝑘 , 𝑘𝑘 = 0. . .𝑛𝑛 − 1, separated by a single space, representing points
the court chose. If 𝐵𝐵2𝑘𝑘 = 𝑖𝑖, the court chose point 𝑃𝑃𝑖𝑖 on side 𝐴𝐴2𝑘𝑘𝐴𝐴2𝑘𝑘+1.

Output:
Output contains 𝑛𝑛 distinct numbers separeated by a single space representing points Bill shoud choose in order to
maximize the property area. If there are multiple solutions that maximize the area, return any solution which maximizes
the area.

Constraints:
• 2 ≤ n ≤ 50,000
• 0 ≤ B2k ≤ n-1, k = 0 … n – 1
• ⋃ 𝑛𝑛−1

𝑖𝑖=0 B2i = {0, 1, 2, …, n – 1}

Example input:
3
0 1 2

Example output:
0 2 1

115

Problem C: Property

Explanation:
Court chose points 𝐵𝐵0 = 𝑃𝑃0, 𝐵𝐵2 = 𝑃𝑃1 and 𝐵𝐵4 = 𝑃𝑃2 as
described in the image below.
If Bill chooses points 𝐵𝐵1 = 𝑃𝑃0, 𝐵𝐵3 = 𝑃𝑃2 and 𝐵𝐵5 = 𝑃𝑃1 he will
achieve the maximum area as shown in the image below:

On the other hand, if Bill chooses points 𝐵𝐵1 = 𝑃𝑃2, 𝐵𝐵3 = 𝑃𝑃0
and 𝐵𝐵5 = 𝑃𝑃1, the area of his green property will be
smaller:

> Time and memory limit: 1s / 256MB

116

Problem C: Property

Explanation:
Court chose points 𝐵𝐵0 = 𝑃𝑃0, 𝐵𝐵2 = 𝑃𝑃1 and 𝐵𝐵4 = 𝑃𝑃2 as
described in the image below.
If Bill chooses points 𝐵𝐵1 = 𝑃𝑃0, 𝐵𝐵3 = 𝑃𝑃2 and 𝐵𝐵5 = 𝑃𝑃1 he will
achieve the maximum area as shown in the image below:

On the other hand, if Bill chooses points 𝐵𝐵1 = 𝑃𝑃2, 𝐵𝐵3 = 𝑃𝑃0
and 𝐵𝐵5 = 𝑃𝑃1, the area of his green property will be
smaller:

> Time and memory limit: 1s / 256MB

Problem C: Property

Solution and analysis:
Let’s first figure out what is the easiest way to calculate the area of the 𝐵𝐵0𝐵𝐵1 …𝐵𝐵2𝑛𝑛−1.
We can easily determine the area of of 𝐵𝐵0𝐵𝐵1 …𝐵𝐵2𝑛𝑛−1 polygon by subtracting a purple triangle area from the initial
𝐴𝐴0𝐴𝐴1 …𝐴𝐴2𝑛𝑛−1 polygon (Figure 1).

Figure 3

Determining the maximum polygon area 𝐵𝐵0𝐵𝐵1 …𝐵𝐵2𝑛𝑛−1 we can achieve is equivalent to determining the minimum purple
triangle area we can achieve, which is a much easier task.
Let’s say the court chose points 𝐵𝐵2𝑘𝑘 and 𝐵𝐵2𝑘𝑘+2 (Figure 1). We now need to determine our point 𝑋𝑋 = 𝐵𝐵2𝑘𝑘+1 to minimize sums
of areas 𝑃𝑃1 and 𝑃𝑃2.

𝑃𝑃1 + 𝑃𝑃2 = 𝐴𝐴2𝑘𝑘+1𝑋𝑋 ∗ 𝐵𝐵2𝑘𝑘𝐶𝐶2𝑘𝑘
2 + 𝑋𝑋𝐴𝐴2𝑘𝑘+2 ∗ 𝐵𝐵2𝑘𝑘+2𝐶𝐶2𝑘𝑘+2

2

𝑃𝑃1 + 𝑃𝑃2 = 𝑥𝑥 ∗ 𝐵𝐵2𝑘𝑘𝐶𝐶2𝑘𝑘
2 +

(𝑠𝑠 − 𝑥𝑥) ∗ 𝐵𝐵2𝑘𝑘+2𝐶𝐶2𝑘𝑘+2
2

𝑃𝑃1 + 𝑃𝑃2 = 𝑠𝑠 ∗ 𝐵𝐵2𝑘𝑘+2𝐶𝐶2𝑘𝑘+22 + 𝑥𝑥 ∗ (𝐵𝐵2𝑘𝑘𝐶𝐶2𝑘𝑘 − 𝐵𝐵2𝑘𝑘+2𝐶𝐶2𝑘𝑘+2)
2

𝑃𝑃1 + 𝑃𝑃2 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 + 𝑥𝑥 ∗ (ℎ2𝑘𝑘 − ℎ2𝑘𝑘+2)
2

Therefore, to minimize the total triangle area, we need to choose right 𝑥𝑥 for ℎ2𝑘𝑘 − ℎ2𝑘𝑘+2. Because our points represent a
permutation of {𝑃𝑃0,𝑃𝑃1, … ,𝑃𝑃𝑛𝑛} , best way to choose points will be to take minimum 𝑥𝑥 when ℎ2𝑘𝑘 − ℎ2𝑘𝑘+2 is maximal, and
maximum 𝑥𝑥, when ℎ2𝑘𝑘+1 − ℎ2𝑘𝑘+2 is minimal.
Writing algorithm is now easy. For polygon create the array 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑ℎ[𝑘𝑘] = (ℎ2𝑘𝑘 − ℎ2𝑘𝑘+2,𝑘𝑘), sort it in an ascending order and
give to 𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑ℎ[𝑘𝑘]. 𝑠𝑠𝑑𝑑𝑒𝑒𝑠𝑠 point 𝑃𝑃𝑛𝑛−𝑘𝑘−1.

The overall algorithm complexity is 𝑂𝑂(𝑁𝑁𝑁𝑁𝑐𝑐𝑒𝑒𝑁𝑁).

117

Problem D: Exploration plan

Problem D: Exploration plan
The competitors of Bubble Cup X gathered after the competition and discussed what is the best way to get to know the
host country and its cities.
After exploring the map of Serbia for a while, the competitors came up with the following facts: the country has 𝑉𝑉 cities
which are indexed with numbers from 1 to 𝑉𝑉, and there are 𝐸𝐸 bi-directional roads that connect the cites. Each road has a
weight (the time needed to cross that road). There are 𝑁𝑁 teams at the Bubble Cup and the competitors came up with the
following plan: each of the 𝑁𝑁 teams will start their journey in one of the 𝑉𝑉 cities, and some of the teams share the starting
position.
They want to find the shortest time 𝑇𝑇, such that every team can move in these 𝑇𝑇 minutes, and the number of different
cities they end up in is at least 𝐾𝐾 (because they will only get to know the cities they end up in). A team doesn't have to be
on the move all the time, if they like it in a particular city, they can stay there and wait for the time to pass.
Please help the competitors to determine the shortest time 𝑇𝑇 so it's possible for them to end up in at least 𝐾𝐾 different
cities or print -1 if that is impossible no matter how they move.
Note that there could exist multiple roads between some cities.

Input:
The first line contains four integers: 𝑉𝑉,𝐸𝐸,𝑁𝑁 and 𝐾𝐾, the number of cities, the number of roads, the number of teams and the
smallest number of different cities they need to end up in. The second line contains 𝑁𝑁 integers, the cities where the teams
start their journey. The next 𝐸𝐸 lines contain information about the roads in following format: 𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖 𝑇𝑇𝑖𝑖 , which means that
there is a road connecting cities 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖, and you need 𝑇𝑇𝑖𝑖 minutes to cross that road.

Output:
Output a single integer that represents the minimal time the teams can move for, such that they end up in at least
𝐾𝐾 different cities or output -1 if there is no solution.

Constraints:
• 1 ≤ V ≤ 600
• 1 ≤ E ≤ 20,000
• 1 ≤ N ≤ 200
• 1 ≤ K ≤ N
• 1 ≤ Ai, Bi ≤ V
• 1 ≤ Ti ≤ 10,000
• The result will be no greater than 1731311 if the solution exists

118

Problem D: Exploration plan

Problem D: Exploration plan
The competitors of Bubble Cup X gathered after the competition and discussed what is the best way to get to know the
host country and its cities.
After exploring the map of Serbia for a while, the competitors came up with the following facts: the country has 𝑉𝑉 cities
which are indexed with numbers from 1 to 𝑉𝑉, and there are 𝐸𝐸 bi-directional roads that connect the cites. Each road has a
weight (the time needed to cross that road). There are 𝑁𝑁 teams at the Bubble Cup and the competitors came up with the
following plan: each of the 𝑁𝑁 teams will start their journey in one of the 𝑉𝑉 cities, and some of the teams share the starting
position.
They want to find the shortest time 𝑇𝑇, such that every team can move in these 𝑇𝑇 minutes, and the number of different
cities they end up in is at least 𝐾𝐾 (because they will only get to know the cities they end up in). A team doesn't have to be
on the move all the time, if they like it in a particular city, they can stay there and wait for the time to pass.
Please help the competitors to determine the shortest time 𝑇𝑇 so it's possible for them to end up in at least 𝐾𝐾 different
cities or print -1 if that is impossible no matter how they move.
Note that there could exist multiple roads between some cities.

Input:
The first line contains four integers: 𝑉𝑉,𝐸𝐸,𝑁𝑁 and 𝐾𝐾, the number of cities, the number of roads, the number of teams and the
smallest number of different cities they need to end up in. The second line contains 𝑁𝑁 integers, the cities where the teams
start their journey. The next 𝐸𝐸 lines contain information about the roads in following format: 𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖 𝑇𝑇𝑖𝑖 , which means that
there is a road connecting cities 𝐴𝐴𝑖𝑖 and 𝐵𝐵𝑖𝑖, and you need 𝑇𝑇𝑖𝑖 minutes to cross that road.

Output:
Output a single integer that represents the minimal time the teams can move for, such that they end up in at least
𝐾𝐾 different cities or output -1 if there is no solution.

Constraints:
• 1 ≤ V ≤ 600
• 1 ≤ E ≤ 20,000
• 1 ≤ N ≤ 200
• 1 ≤ K ≤ N
• 1 ≤ Ai, Bi ≤ V
• 1 ≤ Ti ≤ 10,000
• The result will be no greater than 1731311 if the solution exists

Problem D: Exploration plan

Example input:
6 7 5 4
5 5 2 2 5
1 3 3
1 5 2
1 6 5
2 5 4
2 6 7
3 4 11
3 5 3

Example output:
3

Explanation:
Three teams start from city 5, and two teams start from city 2. If they agree to move for 3 minutes, one possible situation
would be the following: Two teams in city 2, one team in city 5, one team in city 3 , and one team in city 1. And we see
that there are four different cities the teams end their journey at.

> Time and memory limit: 2s / 256MB

119

Problem D: Exploration plan

Solution and analysis:
The first step we should do is to precompute the All-pairs shortest path table. We can do this with Dijkstra’s algorithm from
every node in time 𝑂𝑂(𝑉𝑉2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) or with Floyd Warshall in time 𝑂𝑂(𝑉𝑉3).
The next step is to notice that we can use a binary search to find the answer, because if the teams end up in at least 𝐾𝐾 cities
in some time 𝑇𝑇, they can do that in every greater time (they can just remain in the same cities as in the time 𝑇𝑇).
The final step to our solution is to create a function 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑐𝑐𝑖𝑖 𝑇𝑇), that for some time 𝑇𝑇, which we guess in our binary
search, tells if the requirements are met (at least 𝐾𝐾 different cities). This can be solved as follows: We will create a bipartite
graph, where on the left side we have every starting city of our teams and on the right side the remaining cities. Then for
every starting city on the left, we will create an edge to every city on the right that can be reached within time 𝑇𝑇 (here we use
our APSP table). Now for some fixed time 𝑇𝑇, we have a bipartite graph with starting cities on the left, that have an edge to
every city they can reach within time 𝑇𝑇. After we have this graph, it’s not hard to see that we now have a maximum bipartite
matching problem. We just have to check whether the MBP is greater than or equal to 𝐾𝐾. Our bipartite graph will have at
most 𝑁𝑁 vertices on the left, and at most 𝑁𝑁𝑉𝑉 edges, so if we use Ford Fulkerson algorithm for matching the time complexity of
this part will be 𝑂𝑂(𝑁𝑁2𝑉𝑉).
The total time complexity is: 𝑂𝑂(𝑉𝑉2log𝑙𝑙 + 𝑁𝑁2𝑉𝑉 𝑙𝑙𝑙𝑙𝑙𝑙(maxAnswer))

120

Problem D: Exploration plan

Solution and analysis:
The first step we should do is to precompute the All-pairs shortest path table. We can do this with Dijkstra’s algorithm from
every node in time 𝑂𝑂(𝑉𝑉2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) or with Floyd Warshall in time 𝑂𝑂(𝑉𝑉3).
The next step is to notice that we can use a binary search to find the answer, because if the teams end up in at least 𝐾𝐾 cities
in some time 𝑇𝑇, they can do that in every greater time (they can just remain in the same cities as in the time 𝑇𝑇).
The final step to our solution is to create a function 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙 𝑐𝑐𝑐𝑐𝑐𝑐(𝑖𝑖𝑐𝑐𝑖𝑖 𝑇𝑇), that for some time 𝑇𝑇, which we guess in our binary
search, tells if the requirements are met (at least 𝐾𝐾 different cities). This can be solved as follows: We will create a bipartite
graph, where on the left side we have every starting city of our teams and on the right side the remaining cities. Then for
every starting city on the left, we will create an edge to every city on the right that can be reached within time 𝑇𝑇 (here we use
our APSP table). Now for some fixed time 𝑇𝑇, we have a bipartite graph with starting cities on the left, that have an edge to
every city they can reach within time 𝑇𝑇. After we have this graph, it’s not hard to see that we now have a maximum bipartite
matching problem. We just have to check whether the MBP is greater than or equal to 𝐾𝐾. Our bipartite graph will have at
most 𝑁𝑁 vertices on the left, and at most 𝑁𝑁𝑉𝑉 edges, so if we use Ford Fulkerson algorithm for matching the time complexity of
this part will be 𝑂𝑂(𝑁𝑁2𝑉𝑉).
The total time complexity is: 𝑂𝑂(𝑉𝑉2log𝑙𝑙 + 𝑁𝑁2𝑉𝑉 𝑙𝑙𝑙𝑙𝑙𝑙(maxAnswer))

Problem E: Casinos and travel

Problem E: Casinos and travel
John has just bought a new car and is planning a journey around the country. Country has 𝑁𝑁 cities, some of which are
connected by bidirectional roads. There are 𝑁𝑁 − 1 roads and every city is reachable from any other city. Cities are labeled
from 1 to 𝑁𝑁.
John first has to select from which city he will start his journey. After that, he spends one day in a city and then travels to a
randomly choosen city which is directly connected to his current one and which he has not yet visited. He does this until
he can't continue obeying these rules.
To select the starting city, he calls his friend Jack for advice. Jack is also starting a big casino business and wants to open
casinos in some of the cities (max 1 per city, maybe nowhere). Jack knows John well and he knows that if he visits a city
with a casino, he will gamble exactly once before continuing his journey.
He also knows that if John enters a casino in a good mood, he will leave it in a bad mood and vice versa. Since he is John's
friend, he wants him to be in a good mood at the moment when he finishes his journey. John is in a good mood before
starting the journey.
In how many ways can Jack select a starting city for John and cities where he will build casinos such that no matter how
John travels, he will be in a good mood at the end? Print answer 𝑚𝑚𝑚𝑚𝑚𝑚 109 + 7.

Input:
In the first line, a positive integer 𝑁𝑁, the number of cities.
In the next N - 1 lines, two numbers a, b separated by a single space meaning that cities a and b are connected by a
bidirectional road.

Output:
Output one number: the number of ways Jack can make his selection mod 109 + 7.

Constraints:
• 1 ≤ N ≤ 200,000
• 1 ≤ a, b ≤ N

121

Problem E: Casinos and travel

Example input 1:
2
12

Example output 1:
4

Example input 2:
3
1 2
2 3

Example output 2:
10

Explanation:
Example 1: If Jack selects city 1 as John's starting city, he can either build 0 casinos, so John will be happy all the time,
or build a casino in both cities, so John would visit a casino in city 1, become unhappy, then go to city 2, visit a casino
there and become happy and his journey ends there because he can't go back to city 1. If Jack selects city 2 for start,
everything is symmetrical, so the answer is 4.

Example 2: If Jack tells John to start from city 1, he can either build casinos in 0 or 2 cities (total 4 possibilities). If he
tells him to start from city 2, then John's journey will either contain cities 2 and 1 or 2 and 3. Therefore, Jack will either
have to build no casinos, or build them in all three cities. With other options, he risks John ending his journey unhappy.
Starting from 3 is symmetric to starting from 1, so in total we have 4 + 2 + 4 = 10 options.

> Time and memory limit: 2s / 256MB

122

Problem E: Casinos and travel

Example input 1:
2
12

Example output 1:
4

Example input 2:
3
1 2
2 3

Example output 2:
10

Explanation:
Example 1: If Jack selects city 1 as John's starting city, he can either build 0 casinos, so John will be happy all the time,
or build a casino in both cities, so John would visit a casino in city 1, become unhappy, then go to city 2, visit a casino
there and become happy and his journey ends there because he can't go back to city 1. If Jack selects city 2 for start,
everything is symmetrical, so the answer is 4.

Example 2: If Jack tells John to start from city 1, he can either build casinos in 0 or 2 cities (total 4 possibilities). If he
tells him to start from city 2, then John's journey will either contain cities 2 and 1 or 2 and 3. Therefore, Jack will either
have to build no casinos, or build them in all three cities. With other options, he risks John ending his journey unhappy.
Starting from 3 is symmetric to starting from 1, so in total we have 4 + 2 + 4 = 10 options.

> Time and memory limit: 2s / 256MB

Problem E: Casinos and travel

Solution and analysis:
After examining the problem, it is easy to see that the statement can be reduced to:
Given a tree, in how many ways can you select a root and color every node black or white such that all paths from root to
any leaf node (except the root) have even number of black nodes.
Assume we have selected a root and color the tree arbitrarily. Select any path from root to some leaf. Notice that whatever
the number of black nodes is on this path, the parity can be adjusted by changing the color of the corresponding leaf if
needed. Therefore, for every path mentioned in the problem, its parity is ultimately determined by the leaf node color and all
the other nodes can be colored in any way. Therefore, the number of colorings for a fixed root is 2𝑁𝑁−|𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙|. We only need to
count, for every root, how many leaves are there. That is easy. If a root is a leaf itself, the number of leaves of such rooted
tree is the number of leaves of our unrooted tree, minus the root, otherwise it is just the number of leaves of the unrooted
tree.
The explicit formula is (𝑁𝑁 is the number of nodes and 𝐿𝐿 the number of leaves in the rooted tree):

𝑆𝑆 = 𝐿𝐿 ∗ 2𝑁𝑁−𝐿𝐿+1 + (𝑁𝑁 − 𝐿𝐿) ∗ 2𝑁𝑁−𝐿𝐿

123

Problem F: Product transformation

Problem F: Product transformation
Consider an array 𝐴𝐴 with 𝑁𝑁 elements, all being the same number 𝑎𝑎. Define the product transformation as a simultaneous
update 𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖 ∗ 𝐴𝐴𝑖𝑖+1, that is multiplying each element to the element right to it for 𝑖𝑖 ∈ (1, 2, . . ,𝑁𝑁 − 1), with the last
number 𝐴𝐴𝑁𝑁 remaining the same. For example, if we start with an array 𝐴𝐴 with 𝑎𝑎 = 2 and 𝑁𝑁 = 4 after one product
transformation 𝐴𝐴 = [4, 4, 4, 2], and after two product transformations 𝐴𝐴 = [16, 16, 8, 2]. Your simple task is to calculate the
array 𝐴𝐴 after 𝑀𝑀 product transformations. Since the numbers can get quite big you should output them modulo 𝑄𝑄.

Input:
The first and only line of input contains four integers 𝑁𝑁,𝑀𝑀,𝑎𝑎,𝑄𝑄.

Output:
You should output the array 𝐴𝐴 from left to right, space separated.

Constraints:
• 7 ≤ Q ≤ 109 + 123
• The multiplicative order of a number a modulo Q, ϕ(a, Q) is prime.
• 1 ≤ M, N < ϕ(a, Q) ≤ 106 + 123
• 2 ≤ a ≤106 + 123

Example input:
2 2 2 7

Example output:
1 2

Explanation:
After 2 transformations A = [8, 2] mod 7 = [1, 2].

Note:
The multiplicative order of a number a modulo Q ϕ(a, Q), is the smallest natural number x such that ax mod Q = 1. For
example, ϕ(2, 7) = 3.

> Time and memory limit: 2s / 256MB

124

Problem F: Product transformation

Problem F: Product transformation
Consider an array 𝐴𝐴 with 𝑁𝑁 elements, all being the same number 𝑎𝑎. Define the product transformation as a simultaneous
update 𝐴𝐴𝑖𝑖 = 𝐴𝐴𝑖𝑖 ∗ 𝐴𝐴𝑖𝑖+1, that is multiplying each element to the element right to it for 𝑖𝑖 ∈ (1, 2, . . ,𝑁𝑁 − 1), with the last
number 𝐴𝐴𝑁𝑁 remaining the same. For example, if we start with an array 𝐴𝐴 with 𝑎𝑎 = 2 and 𝑁𝑁 = 4 after one product
transformation 𝐴𝐴 = [4, 4, 4, 2], and after two product transformations 𝐴𝐴 = [16, 16, 8, 2]. Your simple task is to calculate the
array 𝐴𝐴 after 𝑀𝑀 product transformations. Since the numbers can get quite big you should output them modulo 𝑄𝑄.

Input:
The first and only line of input contains four integers 𝑁𝑁,𝑀𝑀,𝑎𝑎,𝑄𝑄.

Output:
You should output the array 𝐴𝐴 from left to right, space separated.

Constraints:
• 7 ≤ Q ≤ 109 + 123
• The multiplicative order of a number a modulo Q, ϕ(a, Q) is prime.
• 1 ≤ M, N < ϕ(a, Q) ≤ 106 + 123
• 2 ≤ a ≤106 + 123

Example input:
2 2 2 7

Example output:
1 2

Explanation:
After 2 transformations A = [8, 2] mod 7 = [1, 2].

Note:
The multiplicative order of a number a modulo Q ϕ(a, Q), is the smallest natural number x such that ax mod Q = 1. For
example, ϕ(2, 7) = 3.

> Time and memory limit: 2s / 256MB

Problem F: Product transformation

Solution and analysis:
For example, let’s consider an array 𝐴𝐴 = [𝑎𝑎,𝑎𝑎,𝑎𝑎,𝑎𝑎,𝑎𝑎], (𝑁𝑁 = 5). After four product transformations that array becomes 𝐴𝐴 =
[𝑎𝑎16,𝑎𝑎15,𝑎𝑎11,𝑎𝑎5,𝑎𝑎]. By writing only one example, one cannot see the pattern that easily. If we write out multiple examples for
different 𝑀𝑀′𝑠𝑠, we might notice that the differences of exponents have somewhat familiar structure. In this case, written from
left to right, we have 1 4 6 4, and that resembles binomials, right? Indeed, it is not hard to prove mathematically, relying on
recurrent formula 𝐶𝐶𝑘𝑘𝑛𝑛 = 𝐶𝐶𝑘𝑘−1𝑛𝑛−1 + 𝐶𝐶𝑘𝑘𝑛𝑛−1, that after 𝑀𝑀 product transformations 𝑖𝑖-th element of zero-base indexed array 𝐴𝐴 is:
𝐴𝐴𝑖𝑖 = 𝑎𝑎𝐶𝐶0𝑀𝑀+𝐶𝐶1𝑀𝑀+⋯+𝐶𝐶𝑁𝑁−𝑖𝑖−1𝑀𝑀 .

Given that the multiplicative order of number 𝑎𝑎 modulo 𝑄𝑄, 𝑝𝑝 = 𝜙𝜙(𝑎𝑎,𝑄𝑄) is prime, we can speed up the computation by using
Sieve of Eratosthenes for finding primes in 𝑂𝑂(𝑝𝑝 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝), and asking if 𝑎𝑎𝑥𝑥 𝑚𝑚𝑙𝑙𝑚𝑚 𝑄𝑄 = 1 in 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥). If we approximate the
prime-counting function 𝜋𝜋(𝑥𝑥) with 𝜋𝜋(𝑥𝑥) ≈ 𝑥𝑥

𝑙𝑙𝑛𝑛𝑥𝑥 , it gives us an overall complexity of 𝑂𝑂(𝑝𝑝 + 𝑝𝑝 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝) which is a bit faster
than a solution which doesn’t use Sieve of Eratosthenes, which runs in 𝑂𝑂(𝑝𝑝 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝) with a big multiplicative constant,
knowing that calculating modulus is expensive.

Now, let us denote 𝐷𝐷𝑖𝑖 = 𝐶𝐶0𝑀𝑀 + 𝐶𝐶1𝑀𝑀 + ⋯+ 𝐶𝐶𝑁𝑁−𝑖𝑖−1𝑀𝑀 , for simplicity. Given the number 𝑝𝑝 which we have previously determined as
𝑝𝑝 = 𝜙𝜙(𝑎𝑎,𝑄𝑄), it stands:
𝑎𝑎𝐷𝐷𝑖𝑖 𝑚𝑚𝑙𝑙𝑚𝑚 𝑄𝑄 = 𝑎𝑎𝐷𝐷𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝 𝑚𝑚𝑙𝑙𝑚𝑚 𝑄𝑄.

Since 𝑝𝑝 is also a prime number, we can find each 𝐶𝐶𝑘𝑘𝑛𝑛 in 𝑂𝑂(1) if we precompute all factorials and their inverses up to 𝑁𝑁 (which
can be done in 𝑂𝑂(𝑁𝑁 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁), given that 𝑝𝑝 is prime and bigger than 𝑁𝑁, as stated in the constraints). Now we can find all
𝐷𝐷𝑖𝑖′𝑠𝑠 easily, in linear time. We also do a standard modular exponentiation algorithm to output final result in each iteration,
yielding total complexity of
𝑂𝑂(𝑝𝑝 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝 + 𝑁𝑁 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁 + 𝑁𝑁 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝).

125

Problem G: Bathroom terminal

Problem G: Bathroom terminal
Smith wakes up at the side of a dirty, disused bathroom, his ankle chained to pipes. Next to him is tape-player with a
hand-written message “Play Me”. He finds a tape in his own back pocket. After putting the tape in the tape-player, he sees
a key hanging from a ceiling, chained to some kind of a machine, which is connected to the terminal next to him. After
pressing a Play button a rough voice starts playing from the tape:

“Listen up Smith. As you can see, you are in pretty tough situation and in order to escape, you have to solve a puzzle.
You are given 𝑁𝑁 strings which represent words. Each word is of the maximum length 𝐿𝐿 and consists of characters 'a'-'e'.
You are also given 𝑀𝑀 strings which represent patterns.
Pattern is a string of length ≤ 𝐿𝐿 and consists of characters 'a'-'e' as well as the maximum 3 characters ′? ′. Character ′? ′ is
an unknown character, meaning it can be equal to any character 'a'-'e', or even an empty character.
For each pattern find the number of words that matches with the given pattern. After solving it and typing the result in
the terminal, the key will drop from the ceiling and you may escape.
Let the game begin.”

Help Smith escape.

Input:
The first line of input contains two integers 𝑁𝑁 and 𝑀𝑀, representing the number of words and patterns, respectively. The
next 𝑁𝑁 lines represent each word, and after those 𝑁𝑁 lines, following 𝑀𝑀 lines represent each pattern.

Output:
Output contains 𝑀𝑀 lines and each line consist of one integer, representing the number of words that match the
corresponding pattern.

Constraints:
• 1 ≤ N ≤ 100,000
• 1 ≤ M ≤ 5,000
• 0 ≤ L ≤ 50

126

Problem G: Bathroom terminal

Problem G: Bathroom terminal
Smith wakes up at the side of a dirty, disused bathroom, his ankle chained to pipes. Next to him is tape-player with a
hand-written message “Play Me”. He finds a tape in his own back pocket. After putting the tape in the tape-player, he sees
a key hanging from a ceiling, chained to some kind of a machine, which is connected to the terminal next to him. After
pressing a Play button a rough voice starts playing from the tape:

“Listen up Smith. As you can see, you are in pretty tough situation and in order to escape, you have to solve a puzzle.
You are given 𝑁𝑁 strings which represent words. Each word is of the maximum length 𝐿𝐿 and consists of characters 'a'-'e'.
You are also given 𝑀𝑀 strings which represent patterns.
Pattern is a string of length ≤ 𝐿𝐿 and consists of characters 'a'-'e' as well as the maximum 3 characters ′? ′. Character ′? ′ is
an unknown character, meaning it can be equal to any character 'a'-'e', or even an empty character.
For each pattern find the number of words that matches with the given pattern. After solving it and typing the result in
the terminal, the key will drop from the ceiling and you may escape.
Let the game begin.”

Help Smith escape.

Input:
The first line of input contains two integers 𝑁𝑁 and 𝑀𝑀, representing the number of words and patterns, respectively. The
next 𝑁𝑁 lines represent each word, and after those 𝑁𝑁 lines, following 𝑀𝑀 lines represent each pattern.

Output:
Output contains 𝑀𝑀 lines and each line consist of one integer, representing the number of words that match the
corresponding pattern.

Constraints:
• 1 ≤ N ≤ 100,000
• 1 ≤ M ≤ 5,000
• 0 ≤ L ≤ 50

Problem G: Bathroom terminal

Example input:
3 1
abc
aec
ac
a?c

Example output:
3

Explanation:
If we switch '?' with 'b', 'e' and with empty character, we get 'abc', 'aec' and 'ac' respectively.

> Time and memory limit: 2s / 256MB

127

Problem G: Bathroom terminal

Solution and analysis:
Let's first put all given words in trie of maximum depth 𝐿𝐿 in 𝑂𝑂(𝑁𝑁 ∗ 𝐿𝐿) time. Once this is done every node in the trie will
contain how many words end at that node.
Now for each pattern we need to check how many words inside the trie satisfy the pattern. For every character 'a'-'e' in
pattern we iterate though trie character by character. When we reach '?' we need to recursively sum the count of all possible
letter choices, by this you have to recursively process all children of the current trie node, by continuing iteration. For the
empty character, you have to stay at current trie node, but process the next character in the pattern, also beware of patterns
with multiple consecutive '?' such as 'a???b' or 'a??' and patterns like '?aaaa?', with same caracters between two '? ', because
while searching the trie, you may find same words multiple times. To solve this, for each pattern make a set of trie node
pointers, which point to end nodes of found words for current pattern, so when you find a word next time, first check if the
word is in the set, before counting it.
As there can be maximum 3 '?' character in a pattern, calculating how many strings in a trie satisfy a pattern will be
performed 𝑂𝑂(5^3 ∗ 𝑀𝑀 ∗ 𝐿𝐿).
Also, there is a bit slower solution. Use lexicographic sort on input words, generate all possible words from every pattern, and
search every generated word in the sorted word vector. This solution is slower by O(logN).

128

Problem G: Bathroom terminal

Solution and analysis:
Let's first put all given words in trie of maximum depth 𝐿𝐿 in 𝑂𝑂(𝑁𝑁 ∗ 𝐿𝐿) time. Once this is done every node in the trie will
contain how many words end at that node.
Now for each pattern we need to check how many words inside the trie satisfy the pattern. For every character 'a'-'e' in
pattern we iterate though trie character by character. When we reach '?' we need to recursively sum the count of all possible
letter choices, by this you have to recursively process all children of the current trie node, by continuing iteration. For the
empty character, you have to stay at current trie node, but process the next character in the pattern, also beware of patterns
with multiple consecutive '?' such as 'a???b' or 'a??' and patterns like '?aaaa?', with same caracters between two '? ', because
while searching the trie, you may find same words multiple times. To solve this, for each pattern make a set of trie node
pointers, which point to end nodes of found words for current pattern, so when you find a word next time, first check if the
word is in the set, before counting it.
As there can be maximum 3 '?' character in a pattern, calculating how many strings in a trie satisfy a pattern will be
performed 𝑂𝑂(5^3 ∗ 𝑀𝑀 ∗ 𝐿𝐿).
Also, there is a bit slower solution. Use lexicographic sort on input words, generate all possible words from every pattern, and
search every generated word in the sorted word vector. This solution is slower by O(logN).

Problem H: Bob and stages

Problem H: Bob and stages
The citizens of BubbleLand are celebrating thier 10th anniversary so they decided to organize a big music festival. Bob got
a task to invite 𝑁𝑁 famous singers who would sing on the fest. He was too busy placing stages for their performances that
he totally forgot to write the invitation e-mails on time, and unfortunately, he only found 𝐾𝐾 available singers. Now there
are more stages than singers leaving some of the stages empty. Bob would not like if citizens of BubbleLand noticed
empty stages and found out that he was irresponsible.
Because of that he decided to choose exactly 𝐾𝐾 stages that form a convex set, make large posters as edges of that convex
set and hold festival inside. While those large posters will make it impossible for citizens to see empty stages outside Bob
still needs to make sure they don't see any of the empty stages inside that area. Since lots of people are coming, he would
like that the festival area is as large as possible. Help him calculate the maximum area that he could obtain respecting the
conditions. If there is no such area, the festival cannot be organized, and the answer is 0.00.

Input:
The first line of input contains 2 integers 𝑁𝑁 and 𝐾𝐾, separated with one empty space, representing number of stages and
number of singers, respectively. Each of the next 𝑁𝑁 lines contain 2 integers 𝑋𝑋𝑖𝑖 and 𝑌𝑌𝑖𝑖, the coordinates of the stages.

Output:
Output contains only one line with one number, rounded to two decimal points: the maximal festival area.

Constraints:
• 3 ≤ N ≤ 1,000
• 3 ≤ K ≤ min (N, 50)
• 0 ≤ Xi, Yi ≤ 109
• There are no three or more collinear points

Example input:
5 4
0 0
3 0
2 1
4 4
1 5

Example output:
10.00

Explanation:
From all possible convex polygon with 4 vertices and no other vertex inside, the largest is one with points (0, 0), (2, 1), (4,
4) and (1, 5).

> Time and memory limit: 2s / 256MB

129

Problem H: Bob and stages

Solution and analysis:
For each point 𝑝𝑝 from the given points we will find the maximal area of all convex 𝐾𝐾-gons which have 𝑝𝑝 as leftmost vertex.
After setting point 𝑝𝑝 and removing all points to the left of 𝑝𝑝, we sort the rest of the points by angle around 𝑝𝑝. If we connect
the points in the order they are sorted in, and the first and the last point with 𝑝𝑝, we get a star-shaped polygon 𝑃𝑃𝑝𝑝. Each
convex polygon that has 𝑝𝑝 as leftmost vertex must lie inside 𝑃𝑃𝑝𝑝. Next, we compute the visibility graph 𝑉𝑉𝑉𝑉𝑝𝑝 in such a polygon
and use dynamic programming to find the polygon with maximum area.
We will construct the visibility graph during one counter-clockwise scan around the polygon. Let's say that we have 𝑀𝑀 points
in 𝑃𝑃𝑝𝑝 different from 𝑝𝑝. We won’t include point 𝑝𝑝 in visibility graph. When we visit 𝑝𝑝𝑖𝑖 we construct all incoming edges of 𝑝𝑝𝑖𝑖.
With each vertex 𝑝𝑝𝑖𝑖 we maintain a queue 𝑄𝑄𝑖𝑖 that stores the starting points of some of the incoming edges of 𝑝𝑝𝑖𝑖 in counter-
clockwise order. It contains those points 𝑝𝑝𝑗𝑗 such that 𝑗𝑗𝑗𝑗 is an edge of the visibility graph and we have not yet reached another
point 𝑝𝑝𝑘𝑘 with 𝑘𝑘 > 𝑗𝑗 such that 𝑗𝑗𝑘𝑘 is an edge of the visibility graph. The following pseudo code describes the algorithm for
computing the visibility graph in a star-shaped polygon.

procedure CreateVisibilityGraph

 for i := 1 to M do Qi := ∅ end
 for i := 1 to M - 1 do Proceed(i, i + 1) end

procedure Proceed(i, j)

 while Qi ≠ ∅ and IsLeftTurn(Front(Qi)i, ij) do
 Proceed (FRONT(Qi), j)

 Pop(Qi)

 end

 Connect(i, j)

 Push(i, Qj)

Time complexity for computing visibility graph is O(|VG|) since every call of the Proceed adds one edge to the VG.

Next, we will use dynamic programming over the visibility graph for computing the maximal area of all polygons with 𝑝𝑝 as
leftmost vertex. Each of these polygons is uniquely determined by one convex chain, a subset of the 𝑉𝑉𝑉𝑉, which has 𝐾𝐾-2 edges
(obtained by removing two edges from 𝑝𝑝). For each edge 𝑒𝑒 of the 𝑉𝑉𝑉𝑉, and for each 𝑑𝑑, 1 ≤ 𝑑𝑑 ≤ 𝑚𝑚-2 we will determine
𝐷𝐷𝑃𝑃[𝑒𝑒][𝑑𝑑] - the maximum area of all polygons whose corresponding convex chain starts with 𝑒𝑒 and which is 𝑑𝑑 edges long.
We will treat the vertices clockwise. Assume that we are at some vertex 𝑝𝑝𝑖𝑖. Let the incoming edges of 𝑝𝑝𝑖𝑖 be 𝑗𝑗𝑖𝑖1,..., 𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and
the outgoing edges 𝑜𝑜𝑜𝑜𝑜𝑜1,..., 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 both ordered counter-clockwise by angle. Note that the algorithm for computing the
visibility graph inside 𝑃𝑃 gives us the edges in this order. For all outgoing edges we know the maximal areas of polygons
which corresponding chain starts there.

130

Problem H: Bob and stages

Solution and analysis:
For each point 𝑝𝑝 from the given points we will find the maximal area of all convex 𝐾𝐾-gons which have 𝑝𝑝 as leftmost vertex.
After setting point 𝑝𝑝 and removing all points to the left of 𝑝𝑝, we sort the rest of the points by angle around 𝑝𝑝. If we connect
the points in the order they are sorted in, and the first and the last point with 𝑝𝑝, we get a star-shaped polygon 𝑃𝑃𝑝𝑝. Each
convex polygon that has 𝑝𝑝 as leftmost vertex must lie inside 𝑃𝑃𝑝𝑝. Next, we compute the visibility graph 𝑉𝑉𝑉𝑉𝑝𝑝 in such a polygon
and use dynamic programming to find the polygon with maximum area.
We will construct the visibility graph during one counter-clockwise scan around the polygon. Let's say that we have 𝑀𝑀 points
in 𝑃𝑃𝑝𝑝 different from 𝑝𝑝. We won’t include point 𝑝𝑝 in visibility graph. When we visit 𝑝𝑝𝑖𝑖 we construct all incoming edges of 𝑝𝑝𝑖𝑖.
With each vertex 𝑝𝑝𝑖𝑖 we maintain a queue 𝑄𝑄𝑖𝑖 that stores the starting points of some of the incoming edges of 𝑝𝑝𝑖𝑖 in counter-
clockwise order. It contains those points 𝑝𝑝𝑗𝑗 such that 𝑗𝑗𝑗𝑗 is an edge of the visibility graph and we have not yet reached another
point 𝑝𝑝𝑘𝑘 with 𝑘𝑘 > 𝑗𝑗 such that 𝑗𝑗𝑘𝑘 is an edge of the visibility graph. The following pseudo code describes the algorithm for
computing the visibility graph in a star-shaped polygon.

procedure CreateVisibilityGraph

 for i := 1 to M do Qi := ∅ end
 for i := 1 to M - 1 do Proceed(i, i + 1) end

procedure Proceed(i, j)

 while Qi ≠ ∅ and IsLeftTurn(Front(Qi)i, ij) do
 Proceed (FRONT(Qi), j)

 Pop(Qi)

 end

 Connect(i, j)

 Push(i, Qj)

Time complexity for computing visibility graph is O(|VG|) since every call of the Proceed adds one edge to the VG.

Next, we will use dynamic programming over the visibility graph for computing the maximal area of all polygons with 𝑝𝑝 as
leftmost vertex. Each of these polygons is uniquely determined by one convex chain, a subset of the 𝑉𝑉𝑉𝑉, which has 𝐾𝐾-2 edges
(obtained by removing two edges from 𝑝𝑝). For each edge 𝑒𝑒 of the 𝑉𝑉𝑉𝑉, and for each 𝑑𝑑, 1 ≤ 𝑑𝑑 ≤ 𝑚𝑚-2 we will determine
𝐷𝐷𝑃𝑃[𝑒𝑒][𝑑𝑑] - the maximum area of all polygons whose corresponding convex chain starts with 𝑒𝑒 and which is 𝑑𝑑 edges long.
We will treat the vertices clockwise. Assume that we are at some vertex 𝑝𝑝𝑖𝑖. Let the incoming edges of 𝑝𝑝𝑖𝑖 be 𝑗𝑗𝑖𝑖1,..., 𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and
the outgoing edges 𝑜𝑜𝑜𝑜𝑜𝑜1,..., 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖 both ordered counter-clockwise by angle. Note that the algorithm for computing the
visibility graph inside 𝑃𝑃 gives us the edges in this order. For all outgoing edges we know the maximal areas of polygons
which corresponding chain starts there.

Problem H: Bob and stages

We will treat the incoming edges in the reversed order, starting at 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. For this first incoming edge we look at all outgoing
edges that form a convex angle with it. Let 𝑖𝑖𝑑𝑑−1 be the maximal value of 𝐷𝐷𝐷𝐷[𝑜𝑜][𝑑𝑑 − 1] among them. Then 𝐷𝐷𝐷𝐷[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖][𝑑𝑑] =
𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖). Clearly, all outgoing edges that form a convex angle with (𝑖𝑖, 𝑗𝑗) form a convex angle with
(𝑖𝑖, 𝑗𝑗-1). Hence, we don’t have to check them again. Finding the maximal area takes time 𝐴𝐴(𝐾𝐾 ∗ |𝑉𝑉𝑉𝑉|), since we look at each
edge twice. The overall complexity of the algorithm is 𝐴𝐴(𝐾𝐾𝑁𝑁3).

References:
[1] David P. Dobkin, Herbert Edelsbrunner, Mark H. Overmars, Searching for Empty Convex Polygons (1988)

131

Problem I: Dating

Problem I: Dating
This story is happening in a town named BubbleLand. There are 𝑛𝑛 houses in BubbleLand. In each of these 𝑛𝑛 houses lives a
boy or a girl. People there really love numbers, and everyone has a favorite number 𝑓𝑓. That means that the boy or the girl
that lives in the 𝑖𝑖 − 𝑡𝑡ℎ house has a favorite number equal to 𝑓𝑓𝑖𝑖 .
The houses are numerated with numbers from 1 to 𝑛𝑛.
The houses are connected with 𝑛𝑛 − 1 bi-directional roads and you can travel from any house to any other house in the
town. There is exactly one path between every pair of houses.
A new dating agency had opened their offices in BubbleLand and the citizens were very excited. They immediately sent 𝑞𝑞
questions to the agency and each question was in the following format:
 𝑎𝑎 𝑏𝑏 – asking how many ways there are to choose a couple (boy and girl) that have the same favorite number and live in
one of the houses on a unique path from house 𝑎𝑎 to house 𝑏𝑏.
Help the dating agency answer the questions and grow their business.

Input:
The first line contains an integer 𝑛𝑛, the number of houses in the town.
The second line contains 𝑛𝑛 integers, where the 𝑖𝑖-th number is 1 if a boy lives in the 𝑖𝑖-th house or 0 if a girl lives in the 𝑖𝑖-th
house.
The third line contains 𝑛𝑛 integers, where the 𝑖𝑖-th number represents the favorite number 𝑓𝑓𝑖𝑖 of the girl or the boy that lives
in the 𝑖𝑖-th house.
The next 𝑛𝑛 − 1 lines contain information about the roads and the 𝑖𝑖-th line contains two integers 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 which means
that there exists a road between these two houses.
The following line contains an integer 𝑞𝑞, the number of questions.
Each of the following 𝑞𝑞 lines represents a question and consists of two integers 𝑎𝑎 and 𝑏𝑏.

Output:
For each of the 𝑞𝑞 questions output a single number, the answer to the citizens’ questions.

Constraints:
• 1 ≤ n ≤ 105
• 1 ≤ q ≤ 105
• 1 ≤ fi ≤ 109

132

Problem I: Dating

Problem I: Dating
This story is happening in a town named BubbleLand. There are 𝑛𝑛 houses in BubbleLand. In each of these 𝑛𝑛 houses lives a
boy or a girl. People there really love numbers, and everyone has a favorite number 𝑓𝑓. That means that the boy or the girl
that lives in the 𝑖𝑖 − 𝑡𝑡ℎ house has a favorite number equal to 𝑓𝑓𝑖𝑖 .
The houses are numerated with numbers from 1 to 𝑛𝑛.
The houses are connected with 𝑛𝑛 − 1 bi-directional roads and you can travel from any house to any other house in the
town. There is exactly one path between every pair of houses.
A new dating agency had opened their offices in BubbleLand and the citizens were very excited. They immediately sent 𝑞𝑞
questions to the agency and each question was in the following format:
 𝑎𝑎 𝑏𝑏 – asking how many ways there are to choose a couple (boy and girl) that have the same favorite number and live in
one of the houses on a unique path from house 𝑎𝑎 to house 𝑏𝑏.
Help the dating agency answer the questions and grow their business.

Input:
The first line contains an integer 𝑛𝑛, the number of houses in the town.
The second line contains 𝑛𝑛 integers, where the 𝑖𝑖-th number is 1 if a boy lives in the 𝑖𝑖-th house or 0 if a girl lives in the 𝑖𝑖-th
house.
The third line contains 𝑛𝑛 integers, where the 𝑖𝑖-th number represents the favorite number 𝑓𝑓𝑖𝑖 of the girl or the boy that lives
in the 𝑖𝑖-th house.
The next 𝑛𝑛 − 1 lines contain information about the roads and the 𝑖𝑖-th line contains two integers 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 which means
that there exists a road between these two houses.
The following line contains an integer 𝑞𝑞, the number of questions.
Each of the following 𝑞𝑞 lines represents a question and consists of two integers 𝑎𝑎 and 𝑏𝑏.

Output:
For each of the 𝑞𝑞 questions output a single number, the answer to the citizens’ questions.

Constraints:
• 1 ≤ n ≤ 105
• 1 ≤ q ≤ 105
• 1 ≤ fi ≤ 109

Problem I: Dating

Example input:
7
1 0 0 1 0 1 0
9 2 9 2 2 9 9
2 6
1 2
4 2
6 5
3 6
7 4
2
1 3
7 5

Example output:
2
3

Explanation:

Blue nodes represent houses where boys live and pink those where girls live, and the numbers beside nodes represent
their favorite numbers.
In the first question from house 1 to house 3, the potential couples are: (1, 3) and (6, 3).
In the second question from house 7 to house 5, the potential couples are: (7, 6), (4, 2) and (4, 5).

> Time and memory limit: 2s / 256MB

133

Problem I: Dating

Solution and analysis:
This problem is solved with Mo’s algorithm on tree.
Flatten the tree in an array by doing a modified DFS preorder traversal. For every node, we must calculate 𝑆𝑆𝑆𝑆[𝑢𝑢] and 𝐸𝐸𝐸𝐸[𝑢𝑢].
 𝑆𝑆𝑆𝑆[𝑢𝑢] represents the start time when we entered the node 𝑢𝑢 in our DFS and 𝐸𝐸𝐸𝐸[𝑢𝑢] represents the time when we finished
exploring the node 𝑢𝑢 and its subtree.
𝑆𝑆𝑆𝑆[𝑢𝑢] and 𝐸𝐸𝐸𝐸[𝑢𝑢] will give us the position of the node 𝑢𝑢 in the flattened array.
Now when we must answer query 𝑢𝑢 − 𝑣𝑣, we split the path 𝑢𝑢 − 𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑣𝑣. Core of the algorithm is to see what ranges
in our arrays 𝑆𝑆𝑆𝑆 and 𝐸𝐸𝐸𝐸 we should consider:
Case 1: 𝐿𝐿𝐿𝐿𝐿𝐿 == 𝑢𝑢:
In this case, our query range would be [𝑆𝑆𝑆𝑆[𝑢𝑢],  𝑆𝑆𝑆𝑆[𝑣𝑣]].
Case 2: 𝐿𝐿𝐿𝐿𝐿𝐿 ! = 𝑢𝑢
In this case, our query range would be [𝐸𝐸𝐸𝐸[𝑢𝑢],  𝑆𝑆𝑆𝑆[𝑣𝑣]] + [𝑆𝑆𝑆𝑆[𝐿𝐿𝐿𝐿𝐿𝐿],  𝑆𝑆𝑆𝑆[𝐿𝐿𝐿𝐿𝐿𝐿]].
We should ignore every node that appears twice or zero on that range (if it appears twice that means we finished processing
that node and it isn't a part of that path). With all this considered we can solve the problem with Mo's algorithm by
decomposing the queries in buckets of the size 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛).
While moving L and R pointers we add and remove nodes and calculate answer on the fly with a counter array for nodes
with girls and for nodes with boys. For example, when we add a node with a boy, we can do the following: 𝑠𝑠𝑟𝑟𝑠𝑠 +=
 𝑐𝑐𝑐𝑐𝑢𝑢𝑛𝑛𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐[𝑓𝑓𝑓𝑓𝑣𝑣𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑟𝑟𝐸𝐸𝑢𝑢𝑓𝑓𝑓𝑓𝑟𝑟𝑠𝑠]. Similarly, for removing nodes from range. Time complexity 𝑂𝑂(𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛))

References:
[1] Mo's Algorithm on Trees: http://codeforces.com/blog/entry/43230

134

Problem I: Dating

Solution and analysis:
This problem is solved with Mo’s algorithm on tree.
Flatten the tree in an array by doing a modified DFS preorder traversal. For every node, we must calculate 𝑆𝑆𝑆𝑆[𝑢𝑢] and 𝐸𝐸𝐸𝐸[𝑢𝑢].
 𝑆𝑆𝑆𝑆[𝑢𝑢] represents the start time when we entered the node 𝑢𝑢 in our DFS and 𝐸𝐸𝐸𝐸[𝑢𝑢] represents the time when we finished
exploring the node 𝑢𝑢 and its subtree.
𝑆𝑆𝑆𝑆[𝑢𝑢] and 𝐸𝐸𝐸𝐸[𝑢𝑢] will give us the position of the node 𝑢𝑢 in the flattened array.
Now when we must answer query 𝑢𝑢 − 𝑣𝑣, we split the path 𝑢𝑢 − 𝐿𝐿𝐿𝐿𝐿𝐿 and 𝐿𝐿𝐿𝐿𝐿𝐿 − 𝑣𝑣. Core of the algorithm is to see what ranges
in our arrays 𝑆𝑆𝑆𝑆 and 𝐸𝐸𝐸𝐸 we should consider:
Case 1: 𝐿𝐿𝐿𝐿𝐿𝐿 == 𝑢𝑢:
In this case, our query range would be [𝑆𝑆𝑆𝑆[𝑢𝑢],  𝑆𝑆𝑆𝑆[𝑣𝑣]].
Case 2: 𝐿𝐿𝐿𝐿𝐿𝐿 ! = 𝑢𝑢
In this case, our query range would be [𝐸𝐸𝐸𝐸[𝑢𝑢],  𝑆𝑆𝑆𝑆[𝑣𝑣]] + [𝑆𝑆𝑆𝑆[𝐿𝐿𝐿𝐿𝐿𝐿],  𝑆𝑆𝑆𝑆[𝐿𝐿𝐿𝐿𝐿𝐿]].
We should ignore every node that appears twice or zero on that range (if it appears twice that means we finished processing
that node and it isn't a part of that path). With all this considered we can solve the problem with Mo's algorithm by
decomposing the queries in buckets of the size 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛).
While moving L and R pointers we add and remove nodes and calculate answer on the fly with a counter array for nodes
with girls and for nodes with boys. For example, when we add a node with a boy, we can do the following: 𝑠𝑠𝑟𝑟𝑠𝑠 +=
 𝑐𝑐𝑐𝑐𝑢𝑢𝑛𝑛𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐[𝑓𝑓𝑓𝑓𝑣𝑣𝑐𝑐𝑠𝑠𝑐𝑐𝑠𝑠𝑟𝑟𝐸𝐸𝑢𝑢𝑓𝑓𝑓𝑓𝑟𝑟𝑠𝑠]. Similarly, for removing nodes from range. Time complexity 𝑂𝑂(𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑛𝑛))

References:
[1] Mo's Algorithm on Trees: http://codeforces.com/blog/entry/43230

