

Content:

bubble cup 1
Problem A: Lock... 7
Problem B: Triangles.. 9
Problem C: Ring.. 11
Problem D: Secretary... 13
Problem E: Proper Half.. 15
Problem F: Romeo and Juliet... 17
Problem G: Security... 20
Problem H: Posters.. 22

bubble cup 2
Problem A: Decorations... 25
Problem B: Mosquitoes.. 27
Problem C: Teleport... 29
Problem D: Knight.. 32
Problem E: Billiard.. 35
Problem F: Bugs Bunny & Elmer Fudd... 37
Problem G: Robots.. 40
Problem H: String... 42
Problem I: Tractor Disruptor.. 44

bubble cup 3
Problem A: Brackets.. 48
Problem B: Cutting... 51
Problem C: Extrema... 56
Problem D: Interval Graph... 58
Problem E: Nice Subsequence... 61

Buxkdop F: Panuql... 64
Problem G: Operations... 67
Problem H: Travel ‘n’ sleep.. 69
Problem I: Queen... 73

bubble cup 4
Problem A: Card... 76
Problem B: Rook... 78
Problem C: Tree game... 81
Problem D: Transformations.. 83
Problem E: LIS... 87
Problem F: Padlock.. 92
Problem G: LR primes... 95
Problem H: Hashed strings.. 98

bubble cup 5
Problem A: Good sets... 102
Problem B: Wheel of Fortune... 104
Problem C: MaxDiff..106
Problem D: Cars... 109
Problem E: Triangles... 113
Problem F: Olympic Games.. 116
Problem G: Matrix... 118
Problem H: String covering... 124
Problem I: Polygons... 128

Welcome

Welcome

This book contains all problems from the first five finals in the 10+ year long history of Bubble Cup. It is intended for high
school and university students, and anyone else wanting to learn more about programming and algorithms. Solving the
problems in this book will require skills far greater than those that are taught in high schools and universities.

Don’t be discouraged if you can’t immediately solve the problems. They are intended to challenge the best programming
teams in the world, and as such are very difficult. We hope you expand your programming knowledge by learning new
interesting algorithmic tricks while reading this book.

5

Welcome

bubble cup 1

Problem A: Lock

Problem A: Lock
Statement:
In a dark basement, there is a wooden case with printed solutions to all tasks in this contest. However, the basement has
thick walls and a door, and a lock on the door. On the lock, there are 𝑛𝑛 horizontal iron bars, and on each of the bars there
is a word with letters of equal width. Each bar can be moved independently to the left or right for one or more widths of a
letter. There is, at least, one letter that is common to all words. Therefore, bars can be lined up so that there is a vertical
line of 𝑛𝑛 identical letters above each of them (each letter on one bar). To unlock the door, bars should be positioned in
such a way that there is a maximal number of such consecutive vertical lines.
You are naturally interested in writing a program that solves this problem.

Input:
The first line contains a number 𝑛𝑛, the number of bars. In each of next 𝑛𝑛 lines, there is a word corresponding to one of the
bars. Each word contains only capital letters and is at least 1 and at most 100 characters long.

Output:
A string of maximal length, that appears in every word as a sequence of consecutive letters. If there is more than one
solution, you should print the leftmost one.

Constraints:
• 1 ≤ n ≤ 1,000
• Each word is between 1 and 100 characters long

Example input:
3
THATBALLOONRISEDTOTHETOP
FOOTBALLWIZARDWASSLEEPY
SOHELOSTBALANCEANDDROPPEDBALLON

Example output:
TBAL

> Time and memory limit: 4s / 16MB

7

Problem A: Lock

Solution and analysis:
There exists a well-known solution to a simpler version of this problem, where the goal is instead to find the longest common
substring between only two strings. The solution uses dynamic programming and a two-dimensional matrix, of form 𝑑𝑑𝑑𝑑[𝑖𝑖][𝑗𝑗]
, to find the longest common substring between all ending indexes in both strings; where the max value in 𝑑𝑑𝑑𝑑 is taken as the
final answer.
(The exact approach to this simpler problem will not be explained here but can be found in many dynamic programming
tutorials).
Now, we can apply this idea of finding all longest common substrings between two strings, to solving the original problem.
Since we are finding the longest common substring between all strings, this implies that there exists a pair of indexes, 𝑎𝑎𝑖𝑖 and
𝑏𝑏𝑖𝑖 for each string where the substring 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖[𝑎𝑎𝑖𝑖. . 𝑏𝑏𝑖𝑖] is equal to the final answer.
Since the answer is to be found in all given strings, we can set a random string to be our 'reference' string. Using the
algorithm for the simpler problem with two strings, we compare all other strings to the reference string.
In a separate array of length 𝑛𝑛, at each index 𝑖𝑖 we can store the length of the longest substring found in all other strings that
is in our reference string and ends at index 𝑖𝑖. After comparing the reference string and another string, the longest length
substring in both strings that ends at index 𝑖𝑖 in the first string is equal to 𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑[𝑖𝑖][𝑗𝑗]) for all 𝑗𝑗. After each comparison, this
separate array is updated. And the final answer is equal to the maximum value in this array, after all comparisons are done.

Complexity:

• Time: O(n3)
• O(n2) for each comparison between two strings, and there are 𝑛𝑛 comparisons.
• Memory: O(n2)
• Each comparison can be done in the same memory.

8

Problem A: Lock

Solution and analysis:
There exists a well-known solution to a simpler version of this problem, where the goal is instead to find the longest common
substring between only two strings. The solution uses dynamic programming and a two-dimensional matrix, of form 𝑑𝑑𝑑𝑑[𝑖𝑖][𝑗𝑗]
, to find the longest common substring between all ending indexes in both strings; where the max value in 𝑑𝑑𝑑𝑑 is taken as the
final answer.
(The exact approach to this simpler problem will not be explained here but can be found in many dynamic programming
tutorials).
Now, we can apply this idea of finding all longest common substrings between two strings, to solving the original problem.
Since we are finding the longest common substring between all strings, this implies that there exists a pair of indexes, 𝑎𝑎𝑖𝑖 and
𝑏𝑏𝑖𝑖 for each string where the substring 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖[𝑎𝑎𝑖𝑖. . 𝑏𝑏𝑖𝑖] is equal to the final answer.
Since the answer is to be found in all given strings, we can set a random string to be our 'reference' string. Using the
algorithm for the simpler problem with two strings, we compare all other strings to the reference string.
In a separate array of length 𝑛𝑛, at each index 𝑖𝑖 we can store the length of the longest substring found in all other strings that
is in our reference string and ends at index 𝑖𝑖. After comparing the reference string and another string, the longest length
substring in both strings that ends at index 𝑖𝑖 in the first string is equal to 𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑑𝑑[𝑖𝑖][𝑗𝑗]) for all 𝑗𝑗. After each comparison, this
separate array is updated. And the final answer is equal to the maximum value in this array, after all comparisons are done.

Complexity:

• Time: O(n3)
• O(n2) for each comparison between two strings, and there are 𝑛𝑛 comparisons.
• Memory: O(n2)
• Each comparison can be done in the same memory.

Problem B: Triangles

Problem B: Triangles
Statement:
You are given two triangles 𝐴𝐴1𝐵𝐵1𝐶𝐶1 and 𝐴𝐴2𝐵𝐵2𝐶𝐶2 in a plane. Is there an isometric transformation of the plane that maps one
triangle onto another, preserving the order of vertices? If so, what kind of transformation is that?

Input:
12 integer numbers in one line separated by a space, which are the coordinates of vertices in the following order:
𝐴𝐴1,𝑥𝑥, 𝐴𝐴1,𝑦𝑦, 𝐵𝐵1.𝑥𝑥, 𝐵𝐵1,𝑦𝑦, 𝐶𝐶1,𝑥𝑥, 𝐶𝐶1,𝑦𝑦, 𝐴𝐴2,𝑥𝑥, 𝐴𝐴2,𝑦𝑦, 𝐵𝐵2,𝑥𝑥, 𝐵𝐵2,𝑦𝑦, 𝐶𝐶2,𝑥𝑥, 𝐶𝐶2,𝑦𝑦. The vertices of one triangle are not collinear, i.e. triangles do exist.

Output:
One of the following letters: N, I, T, R, S, O.
 Here is the meaning for each letter:

 N: there is no isometric transformation mapping one triangle onto another;
 I: the transformation asked for is the identity transformation;
 T: the transformation asked for is a translation;
 R: the transformation asked for is a rotation;
 S: the transformation asked for is an axial symmetry;
 O: the transformation asked for is some other isometric transformation.

Constraints:

• All coordinates are between -10,000 and +10,000, inclusive
• The vertices of one triangle are not collinear

Example input:
1 1 2 2 1 2 5 7 6 8 5 8

Example output:
T

> Time and memory limit: 0.1s / 16MB

9

Problem B: Triangles

Solution and analysis:
This problem boils down to checking step-by-step whether the two given triangles satisfy the set of criterions for each
isometric transformation. The following list contains the criteria for each transformation. Note that the ordering is important,
and the first transformation that is satisfied in the list is the final answer.

N (No isometric transformation):

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴1,𝐵𝐵1) ≠ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴2,𝐵𝐵2) or 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴1,𝐶𝐶1) ≠ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴2,𝐶𝐶2) or 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵1,𝐶𝐶1) ≠ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵2,𝐶𝐶2),
where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥, 𝑦𝑦) is a function that calculates the distance between two points.

I (Identity transformation):

The identity transformation does not change anything about the original triangle when transforming it.
Criteria: 𝐴𝐴1 = 𝐴𝐴2, and 𝐵𝐵1 = 𝐵𝐵2 and 𝐶𝐶1 = 𝐶𝐶2

T (Translation transformation):

The translation transformation translates each vertex of the original triangle by a certain vector.
Criteria: 𝐴𝐴2 − 𝐴𝐴1 = 𝐵𝐵2 − 𝐵𝐵1 = 𝐶𝐶2 − 𝐶𝐶1

R (Rotation transformation):

Since we are, at this point, sure that we are dealing with an isometric transformation(not a translation), it is enough
to check whether the vertices of both triangle, 𝐴𝐴1𝐵𝐵1𝐶𝐶1 and 𝐴𝐴2𝐵𝐵2𝐶𝐶2, occur in the same order; clockwise or counter-
clockwise. Remember, this direction can be computed through the sign of the cross product of vectors 𝐴𝐴𝐴𝐴⃗⃗⃗⃗ ⃗ and 𝐴𝐴𝐴𝐴⃗⃗⃗⃗ ⃗ in
triangle 𝐴𝐴𝐴𝐴𝐴𝐴.

S (Axial symmetry transformation):

If a transformation is an axial symmetry then vectors 𝐴𝐴1 𝐴𝐴2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐵𝐵1𝐵𝐵2,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝐶𝐶1𝐶𝐶2⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗ need to be perpendicular to the same axis
and the axis needs to split those lines in half. Using the dot product, we can easily check if the lines are
perpendicular, since in that case their dot product will be equal to 0.

(Other isometric transformation):

This transformation is satisfied if none of the criteria for the transformations above have been satisfied.

10

Problem B: Triangles

Solution and analysis:
This problem boils down to checking step-by-step whether the two given triangles satisfy the set of criterions for each
isometric transformation. The following list contains the criteria for each transformation. Note that the ordering is important,
and the first transformation that is satisfied in the list is the final answer.

N (No isometric transformation):

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴1,𝐵𝐵1) ≠ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴2,𝐵𝐵2) or 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴1,𝐶𝐶1) ≠ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐴𝐴2,𝐶𝐶2) or 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵1,𝐶𝐶1) ≠ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝐵𝐵2,𝐶𝐶2),
where 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑥𝑥, 𝑦𝑦) is a function that calculates the distance between two points.

I (Identity transformation):

The identity transformation does not change anything about the original triangle when transforming it.
Criteria: 𝐴𝐴1 = 𝐴𝐴2, and 𝐵𝐵1 = 𝐵𝐵2 and 𝐶𝐶1 = 𝐶𝐶2

T (Translation transformation):

The translation transformation translates each vertex of the original triangle by a certain vector.
Criteria: 𝐴𝐴2 − 𝐴𝐴1 = 𝐵𝐵2 − 𝐵𝐵1 = 𝐶𝐶2 − 𝐶𝐶1

R (Rotation transformation):

Since we are, at this point, sure that we are dealing with an isometric transformation(not a translation), it is enough
to check whether the vertices of both triangle, 𝐴𝐴1𝐵𝐵1𝐶𝐶1 and 𝐴𝐴2𝐵𝐵2𝐶𝐶2, occur in the same order; clockwise or counter-
clockwise. Remember, this direction can be computed through the sign of the cross product of vectors 𝐴𝐴𝐴𝐴⃗⃗⃗⃗ ⃗ and 𝐴𝐴𝐴𝐴⃗⃗⃗⃗ ⃗ in
triangle 𝐴𝐴𝐴𝐴𝐴𝐴.

S (Axial symmetry transformation):

If a transformation is an axial symmetry then vectors 𝐴𝐴1 𝐴𝐴2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝐵𝐵1𝐵𝐵2,⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝐶𝐶1𝐶𝐶2⃗⃗⃗⃗⃗⃗ ⃗⃗ ⃗ need to be perpendicular to the same axis
and the axis needs to split those lines in half. Using the dot product, we can easily check if the lines are
perpendicular, since in that case their dot product will be equal to 0.

(Other isometric transformation):

This transformation is satisfied if none of the criteria for the transformations above have been satisfied.

Problem C: Ring

Problem C: Ring
Statement:
A sequence of letters is written on a miraculous ring. When the sequence is read aloud starting from any letter, magic
happens. To get the greatest magic, you need the most powerful word: you want to find a place to start reading from, so
that the word you get is the greatest possible word in the alphabetical order.

Input:
One string, consisting of English capital letters A - Z. The number of letters is at least 1 and at most 100000.

Output:
Two numbers in one line, separated by a space. The first number is the number of places from which the most powerful
word can be achieved. The second number is the smallest index of the starting letter, (counting from one), that gives the
most powerful word.

Constraints:
• The string consists of English capital letters A-Z
• The number of letters is at least 1 and at most 100,000

Example input:
ABRACADABRACAD

Example output:
2 3

> Time and memory limit: 0.1s / 16MB

11

Problem C: Ring

Solution and analysis:
There are several feasible solutions to this problem.

The following algorithms is called the Booth's algorithm for minimal string rotation.

The first approach uses a slightly modified version of the preprocessing function from the Knuth-Morris-Pratt algorithm. The
failure function is calculated as normal, but the string is being rotated during the computation, so some indices must be
calculated more than once, as they wrap around. When all indices have been successfully computed without the string
rotating again, the solution is found. We have to notice that we need the maximal rotation, so we must reverse the
comparisons.
After finding the maximal string rotation, we now have to find the number of times this string appears as a rotation. This is
equal to the minimal period of the calculated string, and the minimal period is just the smallest string that when
concatenated several times gives the starting string. The minimal period can be computed also via the KMP algorithm. This
yields total time complexity 𝑂𝑂(𝑛𝑛).
An alternative solution to finding the maximal string rotation would be to create a suffix array. First, we concatenate our
string to itself and then sort the suffixes, our solution is the largest suffix which starts in the first half. Then we do a binary
search on the sorted suffixes to find how many times the maximal rotation appears.

Reference:
https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation#Booth.27s_Algorithm

12

Problem C: Ring

Solution and analysis:
There are several feasible solutions to this problem.

The following algorithms is called the Booth's algorithm for minimal string rotation.

The first approach uses a slightly modified version of the preprocessing function from the Knuth-Morris-Pratt algorithm. The
failure function is calculated as normal, but the string is being rotated during the computation, so some indices must be
calculated more than once, as they wrap around. When all indices have been successfully computed without the string
rotating again, the solution is found. We have to notice that we need the maximal rotation, so we must reverse the
comparisons.
After finding the maximal string rotation, we now have to find the number of times this string appears as a rotation. This is
equal to the minimal period of the calculated string, and the minimal period is just the smallest string that when
concatenated several times gives the starting string. The minimal period can be computed also via the KMP algorithm. This
yields total time complexity 𝑂𝑂(𝑛𝑛).
An alternative solution to finding the maximal string rotation would be to create a suffix array. First, we concatenate our
string to itself and then sort the suffixes, our solution is the largest suffix which starts in the first half. Then we do a binary
search on the sorted suffixes to find how many times the maximal rotation appears.

Reference:
https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation#Booth.27s_Algorithm

Problem D: Secretary

Problem D: Secretary
Statement:
The big boss has a new secretary who is rather clumsy and computer illiterate. Once, the boss asked her secretary to make
𝑛𝑛 copies of some text, which contained a very important alphanumeric code of length 𝑚𝑚. The poor secretary has retyped
the whole text 𝑛𝑛 times. A bit later, in each copy she found one mistyped character (not necessarily a different one).
Unfortunately, each time it was one of the characters in the code. To make things worse, the secretary has lost the original
text, so the correction cannot be done easily. Please help the secretary to keep her job and reconstruct the correct code if
reconstruction is possible.

Input:
The first line contains two positive integer numbers 𝑛𝑛 and 𝑚𝑚, separated by a space. In each of the next 𝑛𝑛 lines, there is a
sequence of 𝑚𝑚 characters, which are either capital English letters or digits.

Output:
If there are several sequences that differ from each of the input sequences in exactly one character, the output should
contain the word “AMBIGUOUS”. If there is no such a sequence (meaning that the secretary did not even count the
mistakes correctly), the output should contain the word “IMPOSSIBLE”. If there is only one such a sequence, it is
considered correct and the output should contain that sequence.

Constraints:
• 1 ≤ n ≤ 100
• 1 ≤ m ≤ 40

Characters are capital English letters or digits

Example input:
3 9
12305A7Q9
12375A7Q9
12375A7Q9

Example output:
AMBIGUOUS

> Time and memory limit: 0.1s / 16MB

13

Problem D: Secretary

Solution and analysis:
Due to the small problem limits, a brute force approach is possible. Here are the constraints:

• The number of text copies (n ≤ 100)
• The length of each copy (m ≤ 40)
• The alphabet size (|A| ≤ 40)

First, a few definitions to help us during the editorial:

• Column I: The set of characters at the ith index of the 𝑛𝑛 strings.
• Corrupted Column: A column which has two or more distinct characters.

Now let's examine the 𝑚𝑚 columns one-by-one and label the column we are examining at any one moment as the column 𝑖𝑖.
If the column 𝑖𝑖 is not corrupted, we will assume that the letter contained at that index is correct (we will get back to this
assumption when forming the final answers). Otherwise, the column 𝑖𝑖 is corrupted and any character of the alphabet could
be the correct character for the index 𝑖𝑖. Here is an example showing that:

Given strings:

aac
abc
acc

Possible answer:

azc

For each corrupted column, we will try to place every letter of the alphabet at that index and see if it is a potential solution.
We do this by taking a random string, placing the candidate letter in that position and claiming it as the correct code. Since
we assume to have the correct code, we compare all other codes against this code and make sure they all differ by only one
character. If this condition holds, we have found one potential solution.
There is a special case when there are no corrupted columns (all strings equal), and then there are many correct original
codes.
The final answer is ambiguous if we have found more than one potential solution, or if all the given codes are equal. If we
have found only one solution, then we print that solution out as the final answer. Otherwise, no correct code exists.

14

Problem D: Secretary

Solution and analysis:
Due to the small problem limits, a brute force approach is possible. Here are the constraints:

• The number of text copies (n ≤ 100)
• The length of each copy (m ≤ 40)
• The alphabet size (|A| ≤ 40)

First, a few definitions to help us during the editorial:

• Column I: The set of characters at the ith index of the 𝑛𝑛 strings.
• Corrupted Column: A column which has two or more distinct characters.

Now let's examine the 𝑚𝑚 columns one-by-one and label the column we are examining at any one moment as the column 𝑖𝑖.
If the column 𝑖𝑖 is not corrupted, we will assume that the letter contained at that index is correct (we will get back to this
assumption when forming the final answers). Otherwise, the column 𝑖𝑖 is corrupted and any character of the alphabet could
be the correct character for the index 𝑖𝑖. Here is an example showing that:

Given strings:

aac
abc
acc

Possible answer:

azc

For each corrupted column, we will try to place every letter of the alphabet at that index and see if it is a potential solution.
We do this by taking a random string, placing the candidate letter in that position and claiming it as the correct code. Since
we assume to have the correct code, we compare all other codes against this code and make sure they all differ by only one
character. If this condition holds, we have found one potential solution.
There is a special case when there are no corrupted columns (all strings equal), and then there are many correct original
codes.
The final answer is ambiguous if we have found more than one potential solution, or if all the given codes are equal. If we
have found only one solution, then we print that solution out as the final answer. Otherwise, no correct code exists.

Problem E: Proper Half

Problem E: Proper Half
Statement:
You are given 𝑛𝑛 integer numbers, where 𝑛𝑛 + 1 is a power of 2. You should select any 𝑚𝑚 = 𝑛𝑛+12 of those 𝑛𝑛 numbers, so
that their sum is divisible by 𝑚𝑚.

Input:
First line contains an integer 𝑛𝑛, the number of given integers. In the next line there are 𝑛𝑛 integers 𝑎𝑎𝑘𝑘 separated by a space.

Output:
A sequence of 𝑛𝑛 characters, each being ‘+’ or ‘-‘ . If the 𝑘𝑘𝑡𝑡ℎ character is ‘+’, that means the 𝑘𝑘𝑡𝑡ℎ number in the input
sequence is selected into the sum, and ‘-‘ means that it is not.

Constraints:
• 1 ≤ n ≤ 50,000
• k = 1,2,…n
• |ak| ≤ 10 8

Example input:
7
1 -4 3 7 6 -2 5

Example output:
---++++

> Time and memory limit: 0.1s / 16MB

15

Problem E: Proper Half

Solution and analysis:
This task falls into the class of constructive algorithms. One should notice that out of 𝑁𝑁 numbers, we can select 𝑀𝑀 − 1 pairs of
numbers (such that each number can appear in one pair at most) of the same pairity, "throwing" one excess number away.
By summing up each pair, we get a new array 𝑃𝑃𝑖𝑖 with 𝑀𝑀 − 1 elements, where each element is obviously even. It means that
the sum of all elements of array 𝑃𝑃 is even:

𝑃𝑃1 + 𝑃𝑃2 + 𝑃𝑃3 + ⋯+ 𝑃𝑃𝑚𝑚−1 = 𝑆𝑆

and we can divide the equation with 2 getting:

 𝑃𝑃12 + 𝑃𝑃2
2 + … + 𝑃𝑃𝑚𝑚−1

2 = 𝑆𝑆2

Now, the recursive pattern should be noticed. We have a new array with 𝑀𝑀 − 1 elements and should select 𝑀𝑀2 of those so that
their sum is even. The final step is with one element, for which statment from the task obviously holds.
The reconstruction of elements is simple. In the final recursion step we end up with one number B. From the previous step we
should select a pair of numbers that B was constructed from. One step back, and we should select four numbers (two pairs)
that these two were made from. We continue this process until we get to the starting array.
At each step (excluding the final one) we "gain" the factor of 2 and since we have 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) of these steps we know that
the sum of the numbers that we select from the starting array will be divisible by 2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) which is equal to 𝑀𝑀.

The complexity is 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁).

16

Problem E: Proper Half

Solution and analysis:
This task falls into the class of constructive algorithms. One should notice that out of 𝑁𝑁 numbers, we can select 𝑀𝑀 − 1 pairs of
numbers (such that each number can appear in one pair at most) of the same pairity, "throwing" one excess number away.
By summing up each pair, we get a new array 𝑃𝑃𝑖𝑖 with 𝑀𝑀 − 1 elements, where each element is obviously even. It means that
the sum of all elements of array 𝑃𝑃 is even:

𝑃𝑃1 + 𝑃𝑃2 + 𝑃𝑃3 + ⋯+ 𝑃𝑃𝑚𝑚−1 = 𝑆𝑆

and we can divide the equation with 2 getting:

 𝑃𝑃12 + 𝑃𝑃2
2 + … + 𝑃𝑃𝑚𝑚−1

2 = 𝑆𝑆2

Now, the recursive pattern should be noticed. We have a new array with 𝑀𝑀 − 1 elements and should select 𝑀𝑀2 of those so that
their sum is even. The final step is with one element, for which statment from the task obviously holds.
The reconstruction of elements is simple. In the final recursion step we end up with one number B. From the previous step we
should select a pair of numbers that B was constructed from. One step back, and we should select four numbers (two pairs)
that these two were made from. We continue this process until we get to the starting array.
At each step (excluding the final one) we "gain" the factor of 2 and since we have 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) of these steps we know that
the sum of the numbers that we select from the starting array will be divisible by 2𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) which is equal to 𝑀𝑀.

The complexity is 𝑂𝑂(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁).

Problem F: Romeo and Juliet

Problem F: Romeo and Juliet
Statement:
Romeo and Juliet are in love. However, their families forbid them to meet each other and Juliet wants to see Romeo so
much. Luckily, they both live in Bubble Town, and Juliet is allowed to go to sing in a choir on Sunday afternoons.
She leaves her home at exactly four o'clock and she must drive using one of the shortest paths to the church. Similarly,
Romeo plays football for the Bubble Team at a nearby football stadium every Sunday. He also leaves his home at four
o'clock and must follow one of the shortest paths to the stadium.
All streets in Bubble Town are one-way streets. Every Sunday Juliet hopes that on the way to church she will suddenly see
Romeo hurrying to football. However, so far it has not happened, and Juliet does not know whether it is possible at all.

Input:
The first line contains two positive integer numbers 𝑛𝑛 and 𝑚𝑚, where 𝑛𝑛 is the number of junctions and 𝑚𝑚 is the number of
streets in the town. Junctions are numbered from 1 to 𝑛𝑛. Every street connects exactly two junctions in one direction.
On the second line there are four numbers: 𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽, 𝑅𝑅𝑅𝑅, 𝑅𝑅𝐺𝐺. Juliet lives at the junction 𝐽𝐽𝐽𝐽, the church is at the junction 𝐽𝐽𝐽𝐽,
Romeo's home is at the junction 𝑅𝑅𝑅𝑅 and the football stadium is at the junction 𝑅𝑅𝑅𝑅. Each of the next 𝑚𝑚 lines contain three
integers, 𝑎𝑎, 𝑏𝑏 and 𝑑𝑑 describing one street, where 𝑎𝑎 and 𝑏𝑏 are the numbers of the starting and ending junctions of this
street and 𝑑𝑑 is the time in minutes necessary to drive from 𝑎𝑎 to 𝑏𝑏 using this street. It is possible to go from any junction to
any other junction using streets. For a pair of junctions, there are at most two streets connecting them (at most one in
each direction).

Output:
Your task is to determine whether the shortest path for Romeo and the shortest path for Juliet exist, such that they will
see each other at some junction. Both Romeo and Juliet start at the same time. They meet at a junction only if they arrive
there at the same time. If they cannot meet, output −1. If they can meet, output the time in minutes from 4 o'clock to the
first possible meeting of Romeo and Juliet.

Constraints:
• 1 ≤ n ≤ 20,000
• 1 ≤ m ≤ 40,000
• 1 ≤ d ≤ 30

Junctions are numbered from 1 to n

17

Problem F: Romeo and Juliet

Example input:
5 7
1 2 4 5
1 3 5
3 2 7
4 3 5
3 5 8
4 5 13
5 1 9
2 4 6

Example output:
5

> Time and memory limit: 0.5s / 16 MB

18

Problem F: Romeo and Juliet

Example input:
5 7
1 2 4 5
1 3 5
3 2 7
4 3 5
3 5 8
4 5 13
5 1 9
2 4 6

Example output:
5

> Time and memory limit: 0.5s / 16 MB

Problem F: Romeo and Juliet

Solution and analysis:
It is possible for Romeo and Juliet to meet at any junction, therefore we will check each one. Let the current candidate
junction be the junction 𝑥𝑥. We must check the following conditions for it to be possible for Romeo and Juliet to meet here:
Whether they can arrive at that junction at the same time (following their shortest paths to that junction).
Junction 𝑥𝑥 is on one of the shortest paths for both Romeo and Juliet.

Let’s denote the shortest path between two junctions 𝑥𝑥 and 𝑦𝑦 as 𝐷𝐷(𝑥𝑥, 𝑦𝑦).
These two conditions can be formally checked with the following criteria:

𝐷𝐷(𝐽𝐽𝐽𝐽, 𝑥𝑥) = 𝐷𝐷(𝑅𝑅𝑅𝑅, 𝑥𝑥) −the shortest paths to x for both Romeo and Juliet are equal.
𝐷𝐷(𝐽𝐽𝐽𝐽, 𝑥𝑥) + 𝐷𝐷(𝑥𝑥, 𝐽𝐽𝐽𝐽) = 𝐷𝐷(𝐽𝐽𝐽𝐽, 𝐽𝐽𝐽𝐽) and 𝐷𝐷(𝑅𝑅𝑅𝑅, 𝑥𝑥) + 𝐷𝐷(𝑥𝑥, 𝑅𝑅𝑅𝑅) = 𝐷𝐷(𝑅𝑅𝑅𝑅, 𝑅𝑅𝑅𝑅).

Because we are only doing queries of the type:

𝐷𝐷(𝐽𝐽𝐽𝐽, 𝑥𝑥)
𝐷𝐷(𝑅𝑅𝑅𝑅, 𝑥𝑥)
𝐷𝐷(𝑥𝑥, 𝐽𝐽𝐽𝐽)
𝐷𝐷(𝑥𝑥, 𝑅𝑅𝑅𝑅)

It is only needed to do the Dijkstra shortest path algorithm four times with the respectable parameters to precompute these
queries:

• Original graph, starting from 𝐽𝐽𝐽𝐽
• Original graph, starting from 𝑅𝑅𝑅𝑅
• Inverted graph, starting from 𝐽𝐽𝐽𝐽
• Inverted graph, starting from 𝑅𝑅𝑅𝑅

For the final answer, we only need to memorize the valid junction 𝑥𝑥 with the minimum value for the meeting time between
Romeo and Juliet.

19

Problem G: Security

Problem G: Security
Statement:
A space of size 𝑛𝑛 x 𝑛𝑛 x 𝑛𝑛 is to be guarded by a complex security system, consisting of 𝑛𝑛 sensors. The location of each
sensor must have three integer coordinates between 1 and 𝑛𝑛, inclusive. Furthermore, each sensor should secure (and be
located in) a particular part of the space, given by minimal and maximal values along axes. Finally, in order to be able to
catch most of the movements, no two sensors can share any of the coordinates. For example, two sensors cannot have the
same 𝑥𝑥 coordinate, regardless of 𝑦𝑦 and 𝑧𝑧 coordinates. It is not always possible to meet all these conditions, but when it is,
any arrangement of sensors will do the job. You are asked to help arrange the sensors.

Input:
The first line contains the number 𝑛𝑛. In each of the next 𝑛𝑛 lines, there are six integers 𝑥𝑥1, 𝑦𝑦1, 𝑧𝑧1, 𝑥𝑥2, 𝑦𝑦2, 𝑧𝑧2, describing the
required subspace for 𝑘𝑘𝑡𝑡ℎ sensor.

Output:
In each of 𝑛𝑛 lines, there should be three integers separated by a space, coordinates of 𝑘𝑘𝑡𝑡ℎ sensor. If there are no solutions,
each of the 𝑛𝑛 lines should contain three zeroes.

Constraints:
• 1 ≤ n ≤ 10,000
• 1 ≤ x1 ≤ x2 ≤ n
• 1 ≤ y1 ≤ y2 ≤ n
• 1 ≤ z1 ≤ z2 ≤ n
• k = 1,2,… n

Example input:
3
1 1 1 2 2 2
2 2 2 3 3 3
2 1 2 3 2 3

Example output:
1 1 1
3 3 3
2 2 2

> Time and memory limit: 3s / 16MB

20

Problem G: Security

Problem G: Security
Statement:
A space of size 𝑛𝑛 x 𝑛𝑛 x 𝑛𝑛 is to be guarded by a complex security system, consisting of 𝑛𝑛 sensors. The location of each
sensor must have three integer coordinates between 1 and 𝑛𝑛, inclusive. Furthermore, each sensor should secure (and be
located in) a particular part of the space, given by minimal and maximal values along axes. Finally, in order to be able to
catch most of the movements, no two sensors can share any of the coordinates. For example, two sensors cannot have the
same 𝑥𝑥 coordinate, regardless of 𝑦𝑦 and 𝑧𝑧 coordinates. It is not always possible to meet all these conditions, but when it is,
any arrangement of sensors will do the job. You are asked to help arrange the sensors.

Input:
The first line contains the number 𝑛𝑛. In each of the next 𝑛𝑛 lines, there are six integers 𝑥𝑥1, 𝑦𝑦1, 𝑧𝑧1, 𝑥𝑥2, 𝑦𝑦2, 𝑧𝑧2, describing the
required subspace for 𝑘𝑘𝑡𝑡ℎ sensor.

Output:
In each of 𝑛𝑛 lines, there should be three integers separated by a space, coordinates of 𝑘𝑘𝑡𝑡ℎ sensor. If there are no solutions,
each of the 𝑛𝑛 lines should contain three zeroes.

Constraints:
• 1 ≤ n ≤ 10,000
• 1 ≤ x1 ≤ x2 ≤ n
• 1 ≤ y1 ≤ y2 ≤ n
• 1 ≤ z1 ≤ z2 ≤ n
• k = 1,2,… n

Example input:
3
1 1 1 2 2 2
2 2 2 3 3 3
2 1 2 3 2 3

Example output:
1 1 1
3 3 3
2 2 2

> Time and memory limit: 3s / 16MB

Problem G: Security

Solution and analysis:
There are no enforced relations between the 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 axes. Therefore, these 3 axes can be analyzed independently.
The problem boils down to assigning each integer coordinate (for the 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 axis) to a sensor and making sure it is
between the sensor’s minimal and maximal values.
This is a popular problem of assigning points to a set of intervals, and there exists a greedy solution. The points are
considered, left to right, and the intervals are removed from the available set of intervals when it is assigned to a point.
When considering a point with coordinate value 𝑥𝑥, we will assign to it an interval which it fits into, but with the smallest
value for the right side. The reasoning behind this greedy approach is that we want to keep/save the other intervals for points
which will be considered later, and we don’t want to waste that extra space.
This matching of points to intervals can be done in a brute force approach because of the large enough time limit, in 𝑂𝑂(𝑛𝑛2).
Or we can sort the intervals and do a two-pointer solution, in 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) because of the sort.

21

Problem H: Posters

Problem H: Posters
Statement:
Many artists have announced their concerts for the upcoming holidays. Currently, there is an advertising war going on.
Several agencies have employed workers to put up posters on streets. In Bubble City there is only one (although very
long) wall along the main street where posters are allowed. In the advertising union they have an agreement not to put
posters over other, recently put up posters. In order to make sure that the agreement is upheld, they introduced a rule
stating that an agency can send workers only if they are given a specific section of the wall, which they can cover fully with
the posters. The section is specified by the start and end positions.
Since there is little time left till the beginning of the show, agencies have started to play rough: they still obey the rule
about specifying the sections in advance, but they do not care anymore about what was on the wall before. There are 𝑛𝑛
sections specified and each of them is covered by a different poster. Workers come out one after another.
After the concerts, agencies will want to analyze the effects of the campaign and they need to know, for each different
poster, how much of the poster is still visible on the wall. They will certainly employ some programmers. Are you
interested?

Input:
The First line contains a positive integer 𝑛𝑛, the number of poster types. Each of the next 𝑛𝑛 lines have two real numbers
𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘, determining the section where poster of type 𝑘𝑘 has been put. For each poster type, there is exactly one section,
and poster types are given in the order of execution.

Output:
The output consists of 𝑛𝑛 real numbers in one line, separated by a space, printed with 3 decimal places per number. Each
number represents the length of all parts of the wall where the corresponding poster is visible.

Constraints:
• 1 ≤ n ≤ 100,000
• ak and bk are real numbers

Example input:
3
2.0 5.0
3.0 7.0
4.0 6.0

Example output:
1.000 2.000 2.000

> Time and memory limit: 1s / 16MB

22

Problem H: Posters

Problem H: Posters
Statement:
Many artists have announced their concerts for the upcoming holidays. Currently, there is an advertising war going on.
Several agencies have employed workers to put up posters on streets. In Bubble City there is only one (although very
long) wall along the main street where posters are allowed. In the advertising union they have an agreement not to put
posters over other, recently put up posters. In order to make sure that the agreement is upheld, they introduced a rule
stating that an agency can send workers only if they are given a specific section of the wall, which they can cover fully with
the posters. The section is specified by the start and end positions.
Since there is little time left till the beginning of the show, agencies have started to play rough: they still obey the rule
about specifying the sections in advance, but they do not care anymore about what was on the wall before. There are 𝑛𝑛
sections specified and each of them is covered by a different poster. Workers come out one after another.
After the concerts, agencies will want to analyze the effects of the campaign and they need to know, for each different
poster, how much of the poster is still visible on the wall. They will certainly employ some programmers. Are you
interested?

Input:
The First line contains a positive integer 𝑛𝑛, the number of poster types. Each of the next 𝑛𝑛 lines have two real numbers
𝑎𝑎𝑘𝑘 and 𝑏𝑏𝑘𝑘, determining the section where poster of type 𝑘𝑘 has been put. For each poster type, there is exactly one section,
and poster types are given in the order of execution.

Output:
The output consists of 𝑛𝑛 real numbers in one line, separated by a space, printed with 3 decimal places per number. Each
number represents the length of all parts of the wall where the corresponding poster is visible.

Constraints:
• 1 ≤ n ≤ 100,000
• ak and bk are real numbers

Example input:
3
2.0 5.0
3.0 7.0
4.0 6.0

Example output:
1.000 2.000 2.000

> Time and memory limit: 1s / 16MB

Problem H: Posters

Solution and analysis:
Let’s first summarize the problem. Posters can be considered as intervals that cover an infinite set of points. Each point in the
set must be assigned to an interval that contains it, and if there are multiple intervals, the point is assigned to the interval
that comes last in the input file. But instead of considering each point, we will consider ‘important’ points where the answer
changes. Going left to right, changes in the solution happen at the ends of the intervals. Using a line sweep approach (a
popular programming approach), we will scan the ends of the intervals left to right and accumulate the answer during this
scan.
Let’s classify these ends as ‘markers’. Each marker will contain some additional info: an 𝑥𝑥-coordinate, a flag that shows
whether it opens or closes the interval, the index of the interval it belongs to in the input file. Each interval end will be
converted to a marker, and the markers will be sorted based on their 𝑥𝑥-coordinate.
During this scan we will maintain an additional structure ActiveIndexes, a set that contains indexes of all the intervals we are
currently ‘inside of’. So, once we pass the opening end of an interval, its index is added to this structure. And once we pass the
closing end of an interval, its index is removed from this structure.
Now, we scan the markers from left to right. At each marker we will perform two steps:
Between this marker and the previous one, there might have be a poster that is considered to be the answer for that interval
of points. Therefore, if ActiveIndexes is not empty, we take the maximal poster index from that set and add the distance
between these two markers to that poster’s answer.
If the marker opens its interval, add its index to ActiveIndexes. If it closes the interval, remove its index from ActiveIndexes.
After this scan, the final answer for each poster has been accumulated. So, all that is left is to output them.

23

Problem A: Decorations

Problem A: Decorations
Statement:
For the next year’s Bubble Cup, the organizers thought of the possible decorations that could be arranged. One idea was
to create a string of balloons that could go all around the competition arena. The problem is that the director of the
competition likes only certain sequences of balloon colors to be used for the string. For example, if there are four different
colors: 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 and 𝐷𝐷, the director might say that only the sequences 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐷𝐷𝐷𝐷𝐷𝐷 can be used for
decoration.
If the length of the string was 5, then the only possible arrangements could be 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (strings such as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 could not be used because 𝐵𝐵𝐵𝐵𝐵𝐵 is not an approved sequence). Since the director likes variety, it is important to
know the total number of arrangements possible, given the list of approved sequences.

Input:
Input consists of two lines. The first line will contain three positive integers 𝑛𝑛, 𝑙𝑙 and 𝑚𝑚, where 𝑛𝑛 indicates the number of
different colors, 𝑙𝑙 is the length of the arrangements we want to create, and 𝑚𝑚 indicates the number of sequences which
the director likes. The next line will contain 𝑚𝑚 sequences. Each sequence will be of the same length and will be separated
by a single space. All sequences will consist only of uppercase letters of the alphabet.

Output:
Output should be a single line containing the number of possible arrangements. All answers will be within the range of a
32-bit integer.

Constraints:
• 1 ≤ n ≤ 26
• 1 ≤ m ≤ 600
• 1 ≤ l ≤ 100

Each sequence is of the same length, between 1 and 10.
Example input 1: Example input 2: Example input 3:
4 5 6
ABB BCA BCD CAB CDD DDA

5 4 5
• X Y Z W Q

4 8 3
• AA BB CC

Example output 1: Example output 2: Example output 3:
2 625 3

> Time and memory limit: 0.5s / 16MB

Problem H: Posters

bubble cup 2

Problem A: Decorations

Problem A: Decorations
Statement:
For the next year’s Bubble Cup, the organizers thought of the possible decorations that could be arranged. One idea was
to create a string of balloons that could go all around the competition arena. The problem is that the director of the
competition likes only certain sequences of balloon colors to be used for the string. For example, if there are four different
colors: 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 and 𝐷𝐷, the director might say that only the sequences 𝐴𝐴𝐴𝐴𝐴𝐴, 𝐵𝐵𝐵𝐵𝐵𝐵, 𝐵𝐵𝐵𝐵𝐵𝐵, 𝐶𝐶𝐶𝐶𝐶𝐶, 𝐶𝐶𝐶𝐶𝐶𝐶 and 𝐷𝐷𝐷𝐷𝐷𝐷 can be used for
decoration.
If the length of the string was 5, then the only possible arrangements could be 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (strings such as
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 could not be used because 𝐵𝐵𝐵𝐵𝐵𝐵 is not an approved sequence). Since the director likes variety, it is important to
know the total number of arrangements possible, given the list of approved sequences.

Input:
Input consists of two lines. The first line will contain three positive integers 𝑛𝑛, 𝑙𝑙 and 𝑚𝑚, where 𝑛𝑛 indicates the number of
different colors, 𝑙𝑙 is the length of the arrangements we want to create, and 𝑚𝑚 indicates the number of sequences which
the director likes. The next line will contain 𝑚𝑚 sequences. Each sequence will be of the same length and will be separated
by a single space. All sequences will consist only of uppercase letters of the alphabet.

Output:
Output should be a single line containing the number of possible arrangements. All answers will be within the range of a
32-bit integer.

Constraints:
• 1 ≤ n ≤ 26
• 1 ≤ m ≤ 600
• 1 ≤ l ≤ 100

Each sequence is of the same length, between 1 and 10.
Example input 1: Example input 2: Example input 3:
4 5 6
ABB BCA BCD CAB CDD DDA

5 4 5
• X Y Z W Q

4 8 3
• AA BB CC

Example output 1: Example output 2: Example output 3:
2 625 3

> Time and memory limit: 0.5s / 16MB

Problem H: Posters

bubble cup 2

25

Problem A: Decorations

Solution and analysis:
Simply said we have the following problem: How many different strings of length 𝑙𝑙 are there with the restriction that every
substring must belong to the given list of allowed strings.
Let us denote the length of every string in the list as 𝐿𝐿𝐿𝐿𝐿𝐿.
In the first place, we will create a graph so that the strings in the given list are the nodes. We will create a directed edge
between two nodes if the two strings can be concatenated, so that the resulting string has length 𝐿𝐿𝐿𝐿𝐿𝐿 + 1. For this to happen,
we need the following condition to be true: the last 𝐿𝐿𝐿𝐿𝐿𝐿 − 1 characters of the first string must be equal to the first 𝐿𝐿𝐿𝐿𝐿𝐿 − 1
characters of the second string. This basically means that we pick a starting string and if we follow some edge we extend our
string by 1.
So, what we have here is a graph theory problem. The question now is how many paths of length 𝑙𝑙 − 𝐿𝐿𝐿𝐿𝐿𝐿 are there in our
graph. This is because we start from one string that has the length 𝑙𝑙 and every time we follow some edge we extend the
string by 1.
Because our graph is a DAG we can solve this problem with Dynamic Programming. Our state will be: 𝑓𝑓 (𝑖𝑖, 𝑗𝑗) ⇒ how many
paths of length 𝑗𝑗 end in the node 𝑖𝑖. To calculate 𝑓𝑓(𝑖𝑖, 𝑗𝑗) for some node 𝑖𝑖 and some length 𝑗𝑗 we just need to add all 𝑓𝑓(𝑘𝑘, 𝑗𝑗 − 1)
where 𝑘𝑘 is a parent node of 𝑖𝑖.
Our result is the sum of all 𝑓𝑓(𝑖𝑖, 𝑙𝑙 − 𝐿𝐿𝐿𝐿𝐿𝐿) for every node 𝑖𝑖 in our graph.

26

Problem A: Decorations

Solution and analysis:
Simply said we have the following problem: How many different strings of length 𝑙𝑙 are there with the restriction that every
substring must belong to the given list of allowed strings.
Let us denote the length of every string in the list as 𝐿𝐿𝐿𝐿𝐿𝐿.
In the first place, we will create a graph so that the strings in the given list are the nodes. We will create a directed edge
between two nodes if the two strings can be concatenated, so that the resulting string has length 𝐿𝐿𝐿𝐿𝐿𝐿 + 1. For this to happen,
we need the following condition to be true: the last 𝐿𝐿𝐿𝐿𝐿𝐿 − 1 characters of the first string must be equal to the first 𝐿𝐿𝐿𝐿𝐿𝐿 − 1
characters of the second string. This basically means that we pick a starting string and if we follow some edge we extend our
string by 1.
So, what we have here is a graph theory problem. The question now is how many paths of length 𝑙𝑙 − 𝐿𝐿𝐿𝐿𝐿𝐿 are there in our
graph. This is because we start from one string that has the length 𝑙𝑙 and every time we follow some edge we extend the
string by 1.
Because our graph is a DAG we can solve this problem with Dynamic Programming. Our state will be: 𝑓𝑓 (𝑖𝑖, 𝑗𝑗) ⇒ how many
paths of length 𝑗𝑗 end in the node 𝑖𝑖. To calculate 𝑓𝑓(𝑖𝑖, 𝑗𝑗) for some node 𝑖𝑖 and some length 𝑗𝑗 we just need to add all 𝑓𝑓(𝑘𝑘, 𝑗𝑗 − 1)
where 𝑘𝑘 is a parent node of 𝑖𝑖.
Our result is the sum of all 𝑓𝑓(𝑖𝑖, 𝑙𝑙 − 𝐿𝐿𝐿𝐿𝐿𝐿) for every node 𝑖𝑖 in our graph.

Problem B: Mosquitoes

Problem B: Mosquitoes
Statement:
It is well known that organizers of the BubbleCup work hard to come up with interesting problems, provide delicious food
and drinks, design cool t-shirts and throw an unforgivable party to make the event as pleasant as possible for the
contestants. A little less is known about details like balloon color selection, choosing the brand of coffee or, for example,
making sure there are no mosquitoes to bite the contestants.
Mosquitoes live in groups near Ada in Belgrade and organizers have successfully located them. The plan is to rent an
airplane with anti-mosquito pesticide, fly over Ada and release the pesticide. For simplicity, we will consider mosquito
groups as points. Also, since the airplane would be flying in a straight line, the area covered with pesticide would be a
piece of land between two parallel lines. The higher the airplane flies, the wider the area it covers. However, the lower the
airplane flies, pesticide is more concentrated when it hits the ground and therefore more effective.
To save on budget, the organizers would like to make only one flight over Ada in a straight line and use as little pesticide
as possible. To achieve this, the airplane should fly as low as possible and thus cover the narrowest area possible. Help
organizers find how they should fly the airplane.

Input:
The first line contains one positive integer 𝑛𝑛, where 𝑛𝑛 is the number of mosquito groups. Next 𝑛𝑛 lines contain real
numbers 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 , the coordinates of the group 𝑖𝑖. Please note that the same mosquito group can be listed more than
once.

Output:
One number rounded to 6 decimal digits after the decimal point – the minimal width of the area (between two parallel
lines) that contains all mosquito groups.

Constraints:
• 1 ≤n ≤ 500,000
• -500,000 ≤ xi , yi ≤ 500,000

Example input:
4
0.0 0.0
0.0 100.0
100.0 0.0
10.0 70.0

Example output:
70.710678

> Time and memory limit: 2.5s / 16MB

27

Problem B: Mosquitoes

Solution and analysis:
Notice that if each point lies between two parallel lines, then the convex hull of those points also lies between those two lines.
Actually, these two conditions are equivalent.
Let’s see the properties of two parallel lines that are the solution, i.e. whole convex hull lies between them and there are no
two closer lines with the same property. It is obvious that each of them passes through some point of the convex hull. If that
were not the case, then we could bring them closer, and find a better solution. Actually, one of the lines will pass through two
adjacent points of the hull. Why does that hold true? Let 𝑝𝑝 and 𝑞𝑞 be the lines, and 𝑃𝑃 and 𝑄𝑄 points they contain. If we rotate
both 𝑝𝑝 and 𝑞𝑞 by the same angle ⦨𝛼𝛼 around 𝑃𝑃 and 𝑄𝑄 as fixed points, they will remain parallel but become closer. We can
continue rotating them until one hits the next point on the convex hull. At that moment, it will contain two adjacent points of
the hull.
We can find the minimum distance by positioning one line through each of the edges on the convex hull and for each of
them determining the point where the second line should pass through. That would be the furthest point from that edge. For
the first edge we can find it in linear time. When we move to the next edge, we don’t need to test all of the points, but only
move to the next point which is further away from the previous one. This way, time complexity will remain linear in the
number of points of the convex hull. However, we need to find the convex hull first, which requires 𝑂𝑂(𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)) time
complexity.

This method is known as the rotating calipers.

References:
https://en.wikipedia.org/wiki/Rotating_calipers

28

Problem B: Mosquitoes

Solution and analysis:
Notice that if each point lies between two parallel lines, then the convex hull of those points also lies between those two lines.
Actually, these two conditions are equivalent.
Let’s see the properties of two parallel lines that are the solution, i.e. whole convex hull lies between them and there are no
two closer lines with the same property. It is obvious that each of them passes through some point of the convex hull. If that
were not the case, then we could bring them closer, and find a better solution. Actually, one of the lines will pass through two
adjacent points of the hull. Why does that hold true? Let 𝑝𝑝 and 𝑞𝑞 be the lines, and 𝑃𝑃 and 𝑄𝑄 points they contain. If we rotate
both 𝑝𝑝 and 𝑞𝑞 by the same angle ⦨𝛼𝛼 around 𝑃𝑃 and 𝑄𝑄 as fixed points, they will remain parallel but become closer. We can
continue rotating them until one hits the next point on the convex hull. At that moment, it will contain two adjacent points of
the hull.
We can find the minimum distance by positioning one line through each of the edges on the convex hull and for each of
them determining the point where the second line should pass through. That would be the furthest point from that edge. For
the first edge we can find it in linear time. When we move to the next edge, we don’t need to test all of the points, but only
move to the next point which is further away from the previous one. This way, time complexity will remain linear in the
number of points of the convex hull. However, we need to find the convex hull first, which requires 𝑂𝑂(𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)) time
complexity.

This method is known as the rotating calipers.

References:
https://en.wikipedia.org/wiki/Rotating_calipers

Problem C: Teleport

Problem C: Teleport
Statement:
It is the year 2109 and 100𝑡𝑡ℎ Bubble Cup is scheduled (it is indeed 100𝑡𝑡ℎ, two were skipped in mid ‘70s during the Great
Recession II). Perica takes part in all important programming competitions and of course he is a member of a team that is
invited to Bubble Cup. But Perica has a bad habit, he really likes to sleep late in the mornings. He wants to be on time for
the contest, but he wants to leave his home as late as possible to get the most sleep.
Perica always travels by train and uses Serbian Fast Railways Inc. He possesses a railway map and a train timetable, so for
every two connected stations he knows the distance between stations and the departure and arrival time. Between any
two stations there exists at least one direct or indirect path. Between two directly connected stations there exists only one
train that goes back and forth in an infinite loop. If stations 𝐴𝐴 and 𝐵𝐵 are connected and the train needs time 𝑡𝑡 to get from
𝐴𝐴 to 𝐵𝐵, and we know from the timetable that the train departs from the station 𝐴𝐴 at the moment 𝑡𝑡0, then the train is at the
station 𝐴𝐴 at the following moments in time: ... 𝑡𝑡0 – 4𝑡𝑡, 𝑡𝑡0 – 2𝑡𝑡, 𝑡𝑡0 + 2𝑡𝑡, 𝑡𝑡0 + 4𝑡𝑡... and also the train is at the station 𝐵𝐵 at:
... 𝑡𝑡0 – 3𝑡𝑡, 𝑡𝑡0 – 𝑡𝑡, 𝑡𝑡0 + 𝑡𝑡, 𝑡𝑡0 + 3𝑡𝑡... We assume that the train travels at constant velocity and spends no time at stations.
However, different trains may have different velocities.
Luckily for Perica, Serbian Fast Railways Inc. has just installed brand new teleport machines in every train and at every
station. So even if he misses a train he still has a chance to teleport himself from the station into the train, but only if the
train is close enough to the station. If two stations are closer to each other than the distance supported by teleport
machines, Perica can teleport directly from one station to another without using the train. On the other hand, teleporting
forms a train to a station, from a train to a train and between non-connected stations is not possible. Help Perica find the
fastest way from home to the contest.

Input:
First line of input contains three positive integer numbers: 𝑛𝑛 –the number of train stations, 𝑚𝑚 – the number of train lines
(connections) and 𝑑𝑑 – the maximal distance supported by all teleport machines.
Each of the next 𝑚𝑚 lines contains five integers: 𝑠𝑠𝑠𝑠1 𝑠𝑠𝑠𝑠2 𝑡𝑡0 𝑡𝑡 𝑠𝑠, where 𝑠𝑠𝑡𝑡1 and 𝑠𝑠𝑡𝑡2 are ordinal numbers of connected stations
(enumeration starts with one), 𝑡𝑡0 is the moment in time when the train is at the station 𝑠𝑠𝑠𝑠1, 𝑡𝑡 is the time that the train
needs to travel between these two stations and 𝑠𝑠 is the distance between them.
Note 1: The starting and final station (home and contest locations) are those with ordinal numbers 1 and 𝑛𝑛, respectively.
Note 2: All 𝑡𝑡0‘s are relative to some moment in time and can take negative values

Output:
Print two integers separated by one space:
The shortest time that Perica needs to get from home to the contest if he is at the starting station at the moment 0.
The maximum amount of time that Perica can arrive late at the starting station so that he still arrives at the final station at
the same time as if he arrived at the starting station at the moment 0.

29

Problem C: Teleport

Constraints:
• 1 ≤ n ≤ 10,000
• 1 ≤ m ≤ 1,000,000
• 1 ≤ d ≤ 10,000
• 1 ≤ st1, st2 ≤ n
• -10,000 ≤ t0 ≤ 10,000
• 0 < t, s ≤ 10,000

Example input:
4 4 1
1 2 0 5 2
1 3 0 7 2
2 4 4 5 2
3 4 6 2 2

Example output:
8 3

> Time and memory limit: 5s / 128MB

30

Problem C: Teleport

Constraints:
• 1 ≤ n ≤ 10,000
• 1 ≤ m ≤ 1,000,000
• 1 ≤ d ≤ 10,000
• 1 ≤ st1, st2 ≤ n
• -10,000 ≤ t0 ≤ 10,000
• 0 < t, s ≤ 10,000

Example input:
4 4 1
1 2 0 5 2
1 3 0 7 2
2 4 4 5 2
3 4 6 2 2

Example output:
8 3

> Time and memory limit: 5s / 128MB

Problem C: Teleport

Solution and analysis:
The problem is naturally split into two parts (the two numbers we need to output) and we will use the Dijkstra’s algorithm to
solve them.
In the first part, we calculate the earliest arrival time for each station as the distance in the algorithm. We start the algorithm
from the home station with its time set to 0. We update the time of the neighboring stations depending on their distance and
train departure time.

After that, we move to the next unvisited station with the smallest earliest arrival time and repeat the process until we visit
the contest station. There are three cases of updating the neighbor station 𝐵𝐵 from the station 𝐴𝐴:

• If we can teleport directly from 𝐴𝐴 to 𝐵𝐵 (the teleport distance is greater than or equal to the distance between the
stations) the earliest arrival time of 𝐵𝐵 is updated with that of 𝐴𝐴.

• If 1) does not hold we calculate the last departure time of the train from 𝐴𝐴 to 𝐵𝐵 before the earliest arrival time of 𝐴𝐴. If
we can teleport to it, then the earliest arrival time of 𝐵𝐵 is updated with the arrival time of this train.

• If 1) and 2) do not hold, then the earliest arrival time of the station 𝐵𝐵 is updated with the arrival time of the first
train we can catch after we arrive at 𝐴𝐴.

The earliest arrival time of the contest station is the first number we need to print.

The second part of the problem is solved similarly. This time we calculate the latest departure time of each station so that we
could still arrive at the final station on time if we were to start from that station. We start the algorithm from the final station
and set its time to the earliest arrival time from the first part. We update its neighbors and move to the unvisited one with
the largest latest departure time until we arrive at the home station.
Since we cannot teleport from a train to a station, this time there are only two cases of updating the neighbor station 𝐴𝐴 from
station 𝐵𝐵:
If we can teleport directly from 𝐴𝐴 to 𝐵𝐵, the latest departure time of the station 𝐴𝐴 is updated with that of 𝐵𝐵.
Otherwise the latest departure time of the station 𝐴𝐴 is updated with the departure time of the last train that arrives at 𝐵𝐵
before the latest departure time of 𝐵𝐵.

The latest departure time of the home station is the solution to the second part of the problem.
The complexity of the Dijkstra’s algorithm in each part is 𝑂𝑂(𝑀𝑀 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)).

31

Problem D: Knight

Problem D: Knight
Statement:
There is a white knight on an endless chess board. Find the minimum number of moves needed by the knight in order to
move from one given field to another.

Input:
First (and the only) line contains four integer numbers 𝐾𝐾𝒙𝒙, 𝐾𝐾𝒚𝒚, 𝑇𝑇𝒙𝒙, 𝑇𝑇𝒚𝒚, separated by a space. First two numbers represent the
starting position of the knight, and the other two represent the position of the target field.

Output:
The output consists of one integer number, the minimal number of moves.

Constraints:
• -1010 ≤ Kx, Ky, Tx, Ty ≤ 1010

Example input:
1 2 3 4

Example output:
4

> Time and memory limit: 0.1s / 16MB

32

Problem D: Knight

Problem D: Knight
Statement:
There is a white knight on an endless chess board. Find the minimum number of moves needed by the knight in order to
move from one given field to another.

Input:
First (and the only) line contains four integer numbers 𝐾𝐾𝒙𝒙, 𝐾𝐾𝒚𝒚, 𝑇𝑇𝒙𝒙, 𝑇𝑇𝒚𝒚, separated by a space. First two numbers represent the
starting position of the knight, and the other two represent the position of the target field.

Output:
The output consists of one integer number, the minimal number of moves.

Constraints:
• -1010 ≤ Kx, Ky, Tx, Ty ≤ 1010

Example input:
1 2 3 4

Example output:
4

> Time and memory limit: 0.1s / 16MB

Problem D: Knight

Solution and analysis:
First, we can translate both fields, and the solution won’t change. So, we can assume that the knight is starting from the point
(0,0). Also, we can change target coordinates, so the target is in the first quadrant. It’s obvious also that 𝑓𝑓(𝑇𝑇𝑥𝑥, 𝑇𝑇𝑦𝑦) =
 𝑓𝑓(𝑇𝑇𝑦𝑦, 𝑇𝑇𝑥𝑥).
So, every input (𝐾𝐾𝑥𝑥, 𝐾𝐾𝑦𝑦, 𝑇𝑇𝑥𝑥, 𝑇𝑇𝑦𝑦) could be transformed to input (0, 0, 𝑇𝑇𝑥𝑥′, 𝑇𝑇𝑦𝑦′), where 𝑇𝑇𝑦𝑦′ ≥ 𝑇𝑇𝑥𝑥′ ≥ 0, which will have the same
result.

When looking for the results for the nearest fields, there are two patterns to notice:
• The incrementing blue vertical groups of 4
• The red/green diagonals
• Yellow fields are special cases.

33

Problem D: Knight

After analyzing, we can come up with 𝑂𝑂(1) solution for non-yellow fields:

var delta = x-y;
if (y > delta) {
 return delta - 2*Math.floor((delta-y)/3);
} else {
 return delta - 2*Math.floor((delta-y)/4);
}

About “magic” constants 3 and 4: We can notice that 𝑦𝑦 = 2𝑥𝑥 is splitting our solution into two cases. When the target field is
on the left side of this line (“near” 𝑦𝑦 = 0), we can move towards it and decrease 𝑥𝑥 by 2 in each step by staying near 𝑦𝑦 = 0,
and when it’s on the right side of this line, (“near” 𝑦𝑦 = 𝑥𝑥) we can decrease 𝑦𝑦 + 𝑥𝑥 by 3 for each move.

References:

https://stackoverflow.com/questions/2339101/knights-shortest-path-chess-question

34

Problem D: Knight

After analyzing, we can come up with 𝑂𝑂(1) solution for non-yellow fields:

var delta = x-y;
if (y > delta) {
 return delta - 2*Math.floor((delta-y)/3);
} else {
 return delta - 2*Math.floor((delta-y)/4);
}

About “magic” constants 3 and 4: We can notice that 𝑦𝑦 = 2𝑥𝑥 is splitting our solution into two cases. When the target field is
on the left side of this line (“near” 𝑦𝑦 = 0), we can move towards it and decrease 𝑥𝑥 by 2 in each step by staying near 𝑦𝑦 = 0,
and when it’s on the right side of this line, (“near” 𝑦𝑦 = 𝑥𝑥) we can decrease 𝑦𝑦 + 𝑥𝑥 by 3 for each move.

References:

https://stackoverflow.com/questions/2339101/knights-shortest-path-chess-question

Problem E: Billiard

Problem E: Billiard
Statement:
Fifteen billiard balls are placed randomly in the triangle rack. In one step you can switch any two balls. In order to start the
game, you are required to place the balls correctly in as few steps as possible.

Here is the description of the correct ball placements: Balls are labeled with numbers from 1 to 15. The ball number 8 is
black and must be placed in the position of the black circle (see
images a and b). Balls 1 − 7 are called solid, and balls 9 − 15 are
called striped. Position of all balls of either group must match all
places denoted by an X on any of two images bellow, giving four
types of correct placements in total.

Input:
The first (and only) line contains a permutation of numbers 1 – 15,
separated by a space. These numbers are ball labels read row by
row in top down order, each row from left to right.

Output:
The output consists of one integer number, the minimal number of moves.

Constraints:
The input contains the permutation of numbers in range 1 to 15

Example input (image c):
3 5 8 4 10 7 15 11 12 6 14 13 2 9 1

Example output:
3

 Image

> Time and memory limit: 0.1s / 16MB

Image A and B

35

Problem E: Billiard

Solution and analysis:
First, notice that if the black 8 ball is not already in the center we will need to find the 8 ball and swap it with the current ball
in the center. We will need to do this regardless of the chosen configuration.

Now, the only thing that is left is to count the minimal number of swaps for any of the four configurations. If in the given
configuration a stripped ball is not in its correct place that means, there is also a solid ball that isn’t in the correct place. By
swapping these two balls we will improve our order. Because of that, for every configuration we just need to count the
number of striped balls that are not in their correct place.

36

Problem E: Billiard

Solution and analysis:
First, notice that if the black 8 ball is not already in the center we will need to find the 8 ball and swap it with the current ball
in the center. We will need to do this regardless of the chosen configuration.

Now, the only thing that is left is to count the minimal number of swaps for any of the four configurations. If in the given
configuration a stripped ball is not in its correct place that means, there is also a solid ball that isn’t in the correct place. By
swapping these two balls we will improve our order. Because of that, for every configuration we just need to count the
number of striped balls that are not in their correct place.

Problem F: Bugs Bunny & Elmer Fudd

Problem F: Bugs Bunny & Elmer Fudd
Statement:
Elmer Fudd’s farm, way north of/from here, is well known for having the best carrots in the whole area. Elmer spends most
of his time working on his farm and he would not be pleased even if someone just stepped into it. One day, Bugs Bunny
and his bunny friends wanted to have a snack. Actually, they were not as hungry as much as they wanted to mess with
Elmer. They went to his farm to eat as many carrots as they could. What they did not know was that Elmer had set a trap!
The ground around the bunnies suddenly collapsed and each of them was left standing on a fragile looking pillar while
the fire began to rage below, and you could see Elmer running with his gun… Help Bugs Bunny and his friends! Get as
many bunnies as possible out of the farm and report the number of casualties.
The pillars on the farm are aligned in a grid with each pillar one unit away from the pillars to its east, west, north and
south. Pillars at the edge of the farm grid are one unit away from safety, because as long as the bunnies are outside the
farm, they can hide so Elmer cannot shoot them anymore. Not all pillars necessarily have a bunny. A bunny is able to jump
onto any unoccupied pillar that is within 𝑑𝑑 units of his current one (Euclidian distance between those two pillars has to be
less than or equal to 𝑑𝑑). A bunny standing on a pillar within jumping distance of the edge of the farm may always jump to
safety, but there is a catch…
Each pillar becomes weakened after each jump and will soon collapse and no longer be usable by other bunnies. Jumping
onto a pillar does not cause it to weaken, only jumping off of it causes it to weaken and eventually collapse. Only one
bunny can be on one pillar at any given moment.

Input:
Input begins with a line containing a single positive integer 𝑛𝑛 representing the number of rows in the map of the farm,
followed by a single non-negative integer 𝑑𝑑 representing the maximum jumping distance for the bunnies. Two maps
follow, each as a map of characters with one row per line.
The first map will contain a digit [0 − 3] in each position representing the number of jumps the pillar in that position will
sustain before collapsing (0 means there is no pillar there).
The second map will follow, with a '𝐵𝐵' for every position where a bunny is on the field and a '.' for every empty field. There
will never be a bunny on a position where there is no pillar. Each input map is guaranteed to be a rectangle of size 𝑛𝑛 ∙ 𝑚𝑚.
The jumping distance is guaranteed to be in the range of 𝑑𝑑 .

Output:
You should output a single line, containing the number of bunnies that could not escape.

Constraints:
• 1 ≤ n ≤ 20
• 1 ≤ m ≤ 20
• 1 ≤ d ≤ 4

37

Problem F: Bugs Bunny & Elmer Fudd

Example input 1: Example input 2: Example input 3:
3 1 3 2 5 2
1111 00000 00000000
1111 01110 02000000
1111 00000 00321100
BBBB 02000000
BBBB .BBB. 00000000
BBBB

 ..BBBB..

Example output 1: Example output 2: Example output 3:
2 0 1

> Time and memory limit: 3s / 16MB

38

Problem F: Bugs Bunny & Elmer Fudd

Example input 1: Example input 2: Example input 3:
3 1 3 2 5 2
1111 00000 00000000
1111 01110 02000000
1111 00000 00321100
BBBB 02000000
BBBB .BBB. 00000000
BBBB

 ..BBBB..

Example output 1: Example output 2: Example output 3:
2 0 1

> Time and memory limit: 3s / 16MB

Problem F: Bugs Bunny & Elmer Fudd

Solution and analysis:
We will convert this problem to a maximum-flow problem by representing the grid of pillars as a directed graph where the
maximum flow is the number of the bunnies that escape.
Each two pillars within the jumping distance are connected with edges going both ways. Bunnies are represented with a
source node that is connected to the corresponding pillars by directed edges with the capacity of one. The pillars that can
reach safety are connected to the sink.
The restriction of the number of jumps from a pillar corresponds to a vertex capacity. In order to convert vertex capacities to
edge capacities, each pillar will be represented with two nodes: an input node that accepts all edges ending at this pillar and
an output one that contains edges starting from it. There will be one edge directed from the input to the output node, with its
capacity set to the number of jumps that the pillar can survive.
The total number of bunnies subtracted by the maximum-flow of this network is the solution of the problem.
Each augmenting path can be found by breath-first search in 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚 ⋅ 𝑑𝑑2). Since there are 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚) bunnies, there are
𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚) iterations of the algorithm. Therefore, the total time complexity is 𝑂𝑂(𝑛𝑛2 ⋅ 𝑚𝑚2 ⋅ 𝑑𝑑2).

39

Problem G: Robots

Problem G: Robots
Statement:
Somewhere in space and time, the never-ending battle between the Good and the Evil is taking place. So far the Evil is
winning on the eastern and northern front. The Good is retreating under heavy ionic fire and black hole grenades. Luckily,
the Good stumbled upon an abandoned robot factory, the Good’s last and only hope… Unfortunately, most of the robots
the Good has found are rusty and broken. They are all out of function, sitting on a long straight assembly line. All robots
have lasers that could be used either as a weapon or for communication with other robots.
After a quick inspection, it turns out that every robot can be repaired. Once a robot is repaired, it will repair and
communicate with all robots within its laser scope. The repaired robots will in turn do the same. After two robots establish
communication, the robot with a smaller laser scope will increase its scope to match the laser scope of the other robot. A
robot’s laser scope can be increased more than once.
The goal is to repair enough robots for the Good to defeat the Evil (although this may not always be possible). Since the
repair is lengthy and energy consuming, the Good has time to manually repair only one initial robot. Also, some robots
are more damaged than the others, meaning their repair is more energy consuming. To save energy, the Good needs to
choose the least damaged robot which is capable of repairing enough robots to defeat the Evil.

Input:
The first line contains two positive integer numbers 𝑛𝑛 and 𝑘𝑘, where 𝑛𝑛 is the number of robots in the factory and 𝑘𝑘 is the
smallest number of repaired robots the Good needs in order to defeat the Evil. Next 𝑛𝑛 lines contain information about
robots: each line contains three real numbers 𝑝𝑝𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑒𝑒𝑖𝑖 , where 𝑝𝑝𝑖𝑖 is the position, 𝑑𝑑𝑖𝑖 is the laser scope and 𝑒𝑒𝑖𝑖 is the energy
required to repair the robot 𝑖𝑖 manually.

Output:
The output consists of one real number, printed with six decimal places – the minimal energy needed for initial repair,
such that at least 𝑘𝑘 robots end up repaired. If the Good cannot win, the output should be −1.

Constraints:
• 0 ≤ k ≤ n ≤ 1,000,000
• 0 ≤ pi, di, ei ≤ 1,000,000

Example input:
3 2
1.2 10 5.3
5 1.54 1
13 10 3.14

Example output:
3.140000

> Time and memory limit: 5s / 64MB

40

Problem G: Robots

Problem G: Robots
Statement:
Somewhere in space and time, the never-ending battle between the Good and the Evil is taking place. So far the Evil is
winning on the eastern and northern front. The Good is retreating under heavy ionic fire and black hole grenades. Luckily,
the Good stumbled upon an abandoned robot factory, the Good’s last and only hope… Unfortunately, most of the robots
the Good has found are rusty and broken. They are all out of function, sitting on a long straight assembly line. All robots
have lasers that could be used either as a weapon or for communication with other robots.
After a quick inspection, it turns out that every robot can be repaired. Once a robot is repaired, it will repair and
communicate with all robots within its laser scope. The repaired robots will in turn do the same. After two robots establish
communication, the robot with a smaller laser scope will increase its scope to match the laser scope of the other robot. A
robot’s laser scope can be increased more than once.
The goal is to repair enough robots for the Good to defeat the Evil (although this may not always be possible). Since the
repair is lengthy and energy consuming, the Good has time to manually repair only one initial robot. Also, some robots
are more damaged than the others, meaning their repair is more energy consuming. To save energy, the Good needs to
choose the least damaged robot which is capable of repairing enough robots to defeat the Evil.

Input:
The first line contains two positive integer numbers 𝑛𝑛 and 𝑘𝑘, where 𝑛𝑛 is the number of robots in the factory and 𝑘𝑘 is the
smallest number of repaired robots the Good needs in order to defeat the Evil. Next 𝑛𝑛 lines contain information about
robots: each line contains three real numbers 𝑝𝑝𝑖𝑖 ,𝑑𝑑𝑖𝑖 , 𝑒𝑒𝑖𝑖 , where 𝑝𝑝𝑖𝑖 is the position, 𝑑𝑑𝑖𝑖 is the laser scope and 𝑒𝑒𝑖𝑖 is the energy
required to repair the robot 𝑖𝑖 manually.

Output:
The output consists of one real number, printed with six decimal places – the minimal energy needed for initial repair,
such that at least 𝑘𝑘 robots end up repaired. If the Good cannot win, the output should be −1.

Constraints:
• 0 ≤ k ≤ n ≤ 1,000,000
• 0 ≤ pi, di, ei ≤ 1,000,000

Example input:
3 2
1.2 10 5.3
5 1.54 1
13 10 3.14

Example output:
3.140000

> Time and memory limit: 5s / 64MB

Problem G: Robots

Solution and analysis:
The problem is solved using dynamic programming.
For each starting robot we will find the set of robots that will get repaired. Let’s call this the repair set of each robot. If we sort
robots by their position. each of these sets will always be a range of robots. So, for each starting robot we will calculate the
index of the furthest robot on the left and right we can repair.

First, we need to find the largest range (in an array) in each repair set, such that it does not contain robots that are larger
(have larger laser range) than the starting robot but does contain the starting robot. Let’s call this the cover set of each robot.
The cover set of a robot can be obtained if we repeatedly repair its neighbor robots until the next one is larger or out of laser
range. Notice that that the range of all repaired robots in the cover set is going to equal the starting robot. However,
obtaining the cover set for each robot as described gives a quadratic complexity in the worst case.
In order to achieve linear complexity, we will determine the cover set for robots in order of increasing range. The smallest
robot will always be the only one in his cover set. The second smallest will have the smallest one in his set if they are next to
each other and the second one can reach him. The algorithm for finding the cover set of 𝑖𝑖𝑡𝑡ℎ robot is the following:
Initialize the cover set to contain only the 𝑖𝑖𝑡𝑡ℎ robot.
If the first robot outside the set on either side is smaller and in laser range, expand the cover set to also contain his cover set.
Repeat step 2 until no smaller robots can be reached.
The addition of the new set in step 2 is safe to perform since we know that all the robots it contains are smaller and in range.
That cover set will always be computed since its starting robot is smaller than the current one.
This way of computing the cover set is faster since we are adding multiple robots at a time. To prove that it will have linear
complexity, we have to notice that the current cover set is expanded only by adding other cover sets to it. Also, a single cover
set can be added to the other ones at most two times. Once when it is reached by a larger robot from the left and once when
it’s reached from the right.

We can now use cover sets to compute the repair sets. Notice that the largest robot always has an identical cover and repair
set. The cover set for the second largest robot is his repair set unless he can reach the largest one, in which case he can also
reach the exact same set of robots the largest robot can. The algorithm for determining the repair set of the 𝑖𝑖𝑡𝑡ℎ robot is fairly
simple. If it can reach a larger robot then he inherits the repair set from him. Otherwise, his repair set is exactly the same as
his cover set. That is why the computing of repair sets is done for larger robots first.
Now that we have the repair set for each robot, we can easily determine the number of robots in each set as the difference of
the index of the rightmost and leftmost robot increased by one. Then we find the cheapest robot that can repair at least 𝑘𝑘
robots or print – 1 if none are found.
The complexity of finding the cover and repair sets are both 𝑂𝑂(𝑛𝑛). However, sorting the robots takes linearithmic time which
gives us the total complexity of 𝑂𝑂(𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)).

41

Problem H: String

Problem H: String
Statement:
You are given a very, very long string. We will give you instructions what needs to be done with the string and ask you to
find out what the string will look like after all these manipulations.

Input:
The first line contains a string of uppercase English alphabet letters of length 𝑛𝑛. Each other line contains a single
command that affects the current string:
𝐼𝐼,𝑁𝑁, 𝑆𝑆 - Insert the string 𝑆𝑆 of length 𝑠𝑠 starting from the index 𝑁𝑁, where 0 ≤ 𝑁𝑁 ≤ [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ] − 1;
𝐷𝐷,𝑁𝑁1,𝑁𝑁2 - Delete the substring starting from the index 𝑁𝑁1, ending with the index 𝑁𝑁2, where 𝑁𝑁1 ≤ 𝑁𝑁2;
𝐹𝐹,𝑁𝑁1,𝑁𝑁2 - Flip (reverse) the substring starting from the index 𝑁𝑁1, ending with the index 𝑁𝑁2, where 𝑁𝑁1 ≤ 𝑁𝑁2;
All string indices are zero-based and always represent a valid position within the current string. The number of
commands is 𝑘𝑘.

Output:
A single line containing the current string, after all commands are sequentially executed on the input string.

Constraints:
• 1 ≤ n ≤ 1,000,000
• 0 ≤ k ≤ 10,000
• 1 ≤ s ≤ 1,000

Example input:
GOWAYUP
I,5,ELB
I,5,BC
I,0,BU
D,2,6
F,3,6

Example output:
BUBBLECUP

> Time and memory limit: 2s / 64MB

42

Problem H: String

Problem H: String
Statement:
You are given a very, very long string. We will give you instructions what needs to be done with the string and ask you to
find out what the string will look like after all these manipulations.

Input:
The first line contains a string of uppercase English alphabet letters of length 𝑛𝑛. Each other line contains a single
command that affects the current string:
𝐼𝐼,𝑁𝑁, 𝑆𝑆 - Insert the string 𝑆𝑆 of length 𝑠𝑠 starting from the index 𝑁𝑁, where 0 ≤ 𝑁𝑁 ≤ [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ] − 1;
𝐷𝐷,𝑁𝑁1,𝑁𝑁2 - Delete the substring starting from the index 𝑁𝑁1, ending with the index 𝑁𝑁2, where 𝑁𝑁1 ≤ 𝑁𝑁2;
𝐹𝐹,𝑁𝑁1,𝑁𝑁2 - Flip (reverse) the substring starting from the index 𝑁𝑁1, ending with the index 𝑁𝑁2, where 𝑁𝑁1 ≤ 𝑁𝑁2;
All string indices are zero-based and always represent a valid position within the current string. The number of
commands is 𝑘𝑘.

Output:
A single line containing the current string, after all commands are sequentially executed on the input string.

Constraints:
• 1 ≤ n ≤ 1,000,000
• 0 ≤ k ≤ 10,000
• 1 ≤ s ≤ 1,000

Example input:
GOWAYUP
I,5,ELB
I,5,BC
I,0,BU
D,2,6
F,3,6

Example output:
BUBBLECUP

> Time and memory limit: 2s / 64MB

Problem H: String

Solution and analysis:
As hard as it may seem, this task is all about managing intervals. We achieve that by having one big string 𝑆𝑆 that we will
concatenate all the input strings to, and a list of segments of string 𝑆𝑆 that, when concatenated, give what the current string
looks like.
The segments are in the form (𝑖𝑖, 𝑗𝑗). If 𝑖𝑖 ≤ 𝑗𝑗 then the segment should be read from 𝑖𝑖 to 𝑗𝑗, and 𝑖𝑖 > 𝑗𝑗 means that the segment
is reversed, and it should be read from 𝑖𝑖 to 𝑗𝑗 backwards.
One operation that we define is segment splitting. We use this operation if we want to split the segment that the 𝑖𝑖𝑡𝑡ℎ
character belongs to into two pieces, such that the first segment contains all characters up to 𝑖𝑖𝑡𝑡ℎ and the second one all the
remaining characters from that segment. Firstly, we find the segment by summing the lengths of all segments until the sum
exceeds the given index 𝑖𝑖. Then we know that we found the right segment. We move all the remaining segments one position
to the right and add one new segment next to the segment which the 𝑖𝑖𝑡𝑡ℎ character falls into and adjust the indices of those
two.

Now, the three manipulations from the task are simple:
Inserting a new string at the index 𝐴𝐴: First split the segment that 𝐴𝐴 belongs to and add a new segment next to it with indices
from the string 𝑆𝑆 that correspond to the newly concatenated string.
Delete the substring from the index 𝐴𝐴 to the index 𝐵𝐵: Split the segments that 𝐴𝐴 and 𝐵𝐵 are in. Remove all the segments from
the right segment generated from splitting around 𝐴𝐴 to the left segment generated by splitting around 𝐵𝐵.
Reverse the substring from the index 𝐴𝐴 to the index 𝐵𝐵: Split the segments that 𝐴𝐴 and 𝐵𝐵 are in. For all the segments from the
right segment generated from splitting around 𝐴𝐴 to the left segment generated by splitting around 𝐵𝐵 swap beginning and
end of the segment.
For each manipulation, the number of generated or deleted segments is 𝑂𝑂(1) which means that after 𝐾𝐾 manipulations we
end up with 𝑂𝑂(𝐾𝐾) segments. Since we may pass through all segments at each manipulation, total complexity is 𝑂𝑂(𝑘𝑘2).

43

Problem I: Tractor Disruptor

Problem I: Tractor Disruptor
Statement:
In a galaxy far, far away, it is a period of civil war. Rebel spaceships, striking from a
hidden base, have won their first victory against the evil Galactic Empire. However,
the Empire struck back, and the main Rebel spaceship has been trapped by a
positronic tractor beam. Therefore, the Rebels need an ionic tractor disruptor to set
the main spaceship free. Trouble is, a regular ionic tractor disruptor, which they have
plenty of, will not do. No, no, the Rebels actually need a negative ionic tractor
disruptor and there is only one in the whole galaxy. The problem is that the
spaceship that carries the negative ionic tractor disruptor has a broken odometer
and Rebels are not sure if they have enough fuel to get to the destination. So, they want to calculate the correct number
of light-years they have traveled.
The odometer is a device made of gears that rotate along the same axis and every gear has digits attached to it (a
consecutive array of digits from 0 to 𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). When all current digits on every gear are looked at as one number, the
odometer displays the number of light-years traveled as an integer. However, the odometer has a defect – one (same)
digit is broken on all gears. Usually, the gear proceeds from a digit 𝑑𝑑 to a digit 𝑑𝑑 + 1 or from a digit 𝑑𝑑 to a digit 0 if 𝑑𝑑 is
the maximum digit on a certain gear. But for a broken digit, the odometer skips that digit and proceeds to the following
digit on the gear. This defect shows up in all positions. For example, if the broken digit is 3, the odometer displays 45229
and the spaceship travels one light-year, the odometer reading changes to 45240 (instead of 45230).
The additional problem is that the maximum digit doesn’t have to be the same on all gears. You have the information
about what the maximum digit is for every gear. If the maximum digit on the gear 0 is a, on the gear 1 is 𝑏𝑏, on the gear 2
is 𝑐𝑐, on the gear 3 is 𝑑𝑑, then the maximum 4-digit number on the odometer is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Then, after the spaceship travels
another light-year, the odometer reading changes to 10000.
Your task is to calculate what would the odometer reading be if none of the digits were broken. You are provided with the
incorrect odometer reading, the broken digit and the odometer description (maximal digit per every gear).
Note that the broken digit can be larger than some maximum digits. In these positions, the odometer works just fine.
Also, if the broken digit is 0, the odometer does not make mistakes on leading zeros.

Input:
The first line of input contains two numbers: a positive integer 𝑛𝑛 which represents the odometer reading, and a broken
digit 𝑏𝑏. You may assume that the odometer reading will not contain the broken digit.
The second line contains 19 maximum digits from (least significant) position 0 to (the most significant) position 18. Note
that the first maximal digit matches the right-most gear and so on.

Output:
Print the number of light-years that would be present on the odometer if none of the digits were broken.

44

Problem I: Tractor Disruptor

Problem I: Tractor Disruptor
Statement:
In a galaxy far, far away, it is a period of civil war. Rebel spaceships, striking from a
hidden base, have won their first victory against the evil Galactic Empire. However,
the Empire struck back, and the main Rebel spaceship has been trapped by a
positronic tractor beam. Therefore, the Rebels need an ionic tractor disruptor to set
the main spaceship free. Trouble is, a regular ionic tractor disruptor, which they have
plenty of, will not do. No, no, the Rebels actually need a negative ionic tractor
disruptor and there is only one in the whole galaxy. The problem is that the
spaceship that carries the negative ionic tractor disruptor has a broken odometer
and Rebels are not sure if they have enough fuel to get to the destination. So, they want to calculate the correct number
of light-years they have traveled.
The odometer is a device made of gears that rotate along the same axis and every gear has digits attached to it (a
consecutive array of digits from 0 to 𝑚𝑚𝑚𝑚𝑚𝑚_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). When all current digits on every gear are looked at as one number, the
odometer displays the number of light-years traveled as an integer. However, the odometer has a defect – one (same)
digit is broken on all gears. Usually, the gear proceeds from a digit 𝑑𝑑 to a digit 𝑑𝑑 + 1 or from a digit 𝑑𝑑 to a digit 0 if 𝑑𝑑 is
the maximum digit on a certain gear. But for a broken digit, the odometer skips that digit and proceeds to the following
digit on the gear. This defect shows up in all positions. For example, if the broken digit is 3, the odometer displays 45229
and the spaceship travels one light-year, the odometer reading changes to 45240 (instead of 45230).
The additional problem is that the maximum digit doesn’t have to be the same on all gears. You have the information
about what the maximum digit is for every gear. If the maximum digit on the gear 0 is a, on the gear 1 is 𝑏𝑏, on the gear 2
is 𝑐𝑐, on the gear 3 is 𝑑𝑑, then the maximum 4-digit number on the odometer is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. Then, after the spaceship travels
another light-year, the odometer reading changes to 10000.
Your task is to calculate what would the odometer reading be if none of the digits were broken. You are provided with the
incorrect odometer reading, the broken digit and the odometer description (maximal digit per every gear).
Note that the broken digit can be larger than some maximum digits. In these positions, the odometer works just fine.
Also, if the broken digit is 0, the odometer does not make mistakes on leading zeros.

Input:
The first line of input contains two numbers: a positive integer 𝑛𝑛 which represents the odometer reading, and a broken
digit 𝑏𝑏. You may assume that the odometer reading will not contain the broken digit.
The second line contains 19 maximum digits from (least significant) position 0 to (the most significant) position 18. Note
that the first maximal digit matches the right-most gear and so on.

Output:
Print the number of light-years that would be present on the odometer if none of the digits were broken.

Problem I: Tractor Disruptor

Constraints:

• 1 ≤ max_digiti ≤ 9
• 1 ≤ n ≤ 263-1
• 0 ≤ b ≤ 9

Example input 1:
45 3
8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 2 2 2

Example output 1:
31

Example input 2:
45 0
8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 2 2 2

Example output 2:
41

> Time and memory limit: 1s / 64MB

45

Problem I: Tractor Disruptor

Solution and analysis:
Probably the simplest and the most logical solution is to convert the read number from the “broken odometer number
system” to the decade number system and then convert the obtained number to the “correct odometer number system”.
The first step: Let the number of different digits on 𝑖𝑖-th wheel on broken odometer is 𝑚𝑚𝑖𝑖 (not counting the broken digit 𝑏𝑏) and
the read number is 𝑟𝑟𝑖𝑖 . Let 𝑘𝑘𝑖𝑖 is number of possible values on 𝑖𝑖𝑡𝑡ℎ wheel greater than zero and lower or equal to 𝑟𝑟𝑖𝑖 . So 𝑘𝑘𝑖𝑖 equals
𝑟𝑟𝑖𝑖 if 𝑟𝑟𝑖𝑖 is lower than 𝑏𝑏, otherwise it is 𝑟𝑟𝑖𝑖 − 1. Then, the read number converted to a decade number system is 𝑑𝑑𝑑𝑑𝑑𝑑 =
∑ 𝑘𝑘𝑖𝑖 ∏ 𝑚𝑚𝑗𝑗

𝑖𝑖
𝑗𝑗

19
𝑖𝑖=1 .

The second step: We need to calculate the 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 of one increment on each wheel. It is equal to the multiplication of the
number of different digits on all less significant wheels. Now, going from the most significant wheels to the less significant, it
is easy to calculate the digit on each wheel so that the odometer value is equal 𝑑𝑑𝑑𝑑𝑑𝑑 .
The time complexity of both steps depends on the number of digits in the read number (𝑛𝑛 = 19), and it is 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)).

46

Problem I: Tractor Disruptor

Solution and analysis:
Probably the simplest and the most logical solution is to convert the read number from the “broken odometer number
system” to the decade number system and then convert the obtained number to the “correct odometer number system”.
The first step: Let the number of different digits on 𝑖𝑖-th wheel on broken odometer is 𝑚𝑚𝑖𝑖 (not counting the broken digit 𝑏𝑏) and
the read number is 𝑟𝑟𝑖𝑖 . Let 𝑘𝑘𝑖𝑖 is number of possible values on 𝑖𝑖𝑡𝑡ℎ wheel greater than zero and lower or equal to 𝑟𝑟𝑖𝑖 . So 𝑘𝑘𝑖𝑖 equals
𝑟𝑟𝑖𝑖 if 𝑟𝑟𝑖𝑖 is lower than 𝑏𝑏, otherwise it is 𝑟𝑟𝑖𝑖 − 1. Then, the read number converted to a decade number system is 𝑑𝑑𝑑𝑑𝑑𝑑 =
∑ 𝑘𝑘𝑖𝑖 ∏ 𝑚𝑚𝑗𝑗

𝑖𝑖
𝑗𝑗

19
𝑖𝑖=1 .

The second step: We need to calculate the 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 of one increment on each wheel. It is equal to the multiplication of the
number of different digits on all less significant wheels. Now, going from the most significant wheels to the less significant, it
is easy to calculate the digit on each wheel so that the odometer value is equal 𝑑𝑑𝑑𝑑𝑑𝑑 .
The time complexity of both steps depends on the number of digits in the read number (𝑛𝑛 = 19), and it is 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)).

Problem I: Tractor Disruptor

bubble cup 3

Problem A: Brackets

Problem A: Brackets
Statement:
You are given an array of 𝑛𝑛 strings, and each string contains only open and closed brackets.
Find out if those strings can be sorted in such a way that after the concatenation of all strings, a valid arrangement of
brackets is achieved (like as in a math expression after removing all other characters).

Input:
The first line contains the positive integer 𝑛𝑛, the number of strings. Each of the next 𝑛𝑛 lines contains a sequence of ‘(‘ and
‘)’ characters, up to the end of the line.

Output:
The output consists of one word:
“yes” (without quotes) if the required arrangement of strings exists
“no” if it doesn’t exist

Constraints:
• 1 ≤ n ≤ 100,000
• Total number of all characters in all strings does not exceed 10,000,000 (ten million).

Example input: Example output:
3
(()
(
))

yes

> Time and memory limit: 3s / 64MB

48

Problem A: Brackets

Problem A: Brackets
Statement:
You are given an array of 𝑛𝑛 strings, and each string contains only open and closed brackets.
Find out if those strings can be sorted in such a way that after the concatenation of all strings, a valid arrangement of
brackets is achieved (like as in a math expression after removing all other characters).

Input:
The first line contains the positive integer 𝑛𝑛, the number of strings. Each of the next 𝑛𝑛 lines contains a sequence of ‘(‘ and
‘)’ characters, up to the end of the line.

Output:
The output consists of one word:
“yes” (without quotes) if the required arrangement of strings exists
“no” if it doesn’t exist

Constraints:
• 1 ≤ n ≤ 100,000
• Total number of all characters in all strings does not exceed 10,000,000 (ten million).

Example input: Example output:
3
(()
(
))

yes

> Time and memory limit: 3s / 64MB

Problem A: Brackets

Solution and analysis:
In this problem each string is equivalent to a string starting with zero or more closed brackets, followed by zero or more open
brackets. For example, underlined brackets are matching and can be removed from the string: “ ())((())(”, reducing it to: “)((”.
So, each string is completely characterized with two integer attributes: the number of unmatched closed brackets at the
beginning of a string and the number of unmatched open brackets at the end of a string.

Let’s introduce the following notation:

• 𝑈𝑈𝑈𝑈[𝑖𝑖] – Number of unmatched open brackets at the end of 𝑖𝑖-th string;
• 𝑈𝑈𝑈𝑈[𝑖𝑖] – Number of unmatched open brackets at the beginning of 𝑖𝑖-th string;
• 𝐵𝐵[𝑖𝑖] = 𝑈𝑈𝑈𝑈[𝑖𝑖]– 𝑈𝑈𝑈𝑈[𝑖𝑖] – Bracket balance of 𝑖𝑖-th string, which can also be negative.

In the previous example 𝑈𝑈𝑈𝑈 = 1, 𝑈𝑈𝑈𝑈 = 2, 𝐵𝐵 = 1.

If ∑ 𝐵𝐵[𝑖𝑖]𝑛𝑛

𝑖𝑖=1 ≠ 0, it is clearly impossible to arrange the strings as required.

Otherwise (if ∑ 𝐵𝐵[𝑖𝑖]𝑛𝑛

𝑖𝑖=1 = 0), we can first sort the strings according to the following criteria:
• First we put all strings with positive (i.e. non-negative) balance, and then all strings with negative balance.
• 𝑈𝑈𝑈𝑈 should be increasing among strings with positive balance, and 𝑈𝑈𝑈𝑈 should be decreasing among strings with

negative balance.
• If two strings with positive balance have the same 𝑈𝑈𝑈𝑈 (or two strings with negative balance have the same 𝑈𝑈𝑈𝑈), we

first put the one with higher 𝐵𝐵.

For the global string (obtained by concatenation of given strings), we want to check that at each point the number of closed
brackets does not exceed the number of open brackets, i.e. that balance at each position is non-negative.
It is not difficult to prove that for any two consecutive strings the suggested order maximizes the lowest balance over all
positions in the global string. Consequently, if a solution exists, it can be obtained by sorting as described. Let’s prove this.

We can look at the string as an ordered triple (𝑈𝑈𝑈𝑈[𝑖𝑖],𝑈𝑈𝑈𝑈[𝑖𝑖],𝐵𝐵[𝑖𝑖]). Let’s assume that these strings are arranged in correct
form. In other words:

𝑈𝑈𝑈𝑈[1] = 0
𝑈𝑈𝑈𝑈[𝑖𝑖] ≤ 𝐵𝐵[1] + 𝐵𝐵[2] + ⋯+ 𝐵𝐵[𝑖𝑖 − 1] , for 𝑖𝑖 ∈ [2,𝑛𝑛]

First, let us prove that a nonnegative balanced string can be moved in front of negative ones. The necessary and sufficient
condition for this is to prove that, if we have two successive strings with indexes 𝑖𝑖 and 𝑖𝑖 + 1, where 𝐵𝐵[𝑖𝑖] < 0 and 𝐵𝐵[𝑖𝑖 + 1] ≥
0, we can swap them. Denote 𝐵𝐵[1] + ⋯𝐵𝐵[𝑖𝑖]as 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖]. Now from 𝑈𝑈𝑈𝑈[𝑖𝑖] ≤ 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] and 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] ≤ 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] + 𝐵𝐵[𝑖𝑖]
we have that 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] ≤ 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] and 𝑈𝑈𝑈𝑈[𝑖𝑖] ≤ 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] + 𝐵𝐵[𝑖𝑖 + 1] because 𝐵𝐵[𝑖𝑖] is negative and 𝐵𝐵[𝑖𝑖 + 1] is
nonnegative. Of course, because this is a successive string, described transformation does not affect the rest of strings. With
this operation we only increase the required differences.

49

Problem A: Brackets

Figure 1. We can look at the arrangement as Dyck lattice path with 𝑈𝑈𝑈𝑈[𝑖𝑖] and 𝑈𝑈𝑈𝑈[𝑖𝑖] as jups.

Now we can look at the strings with positive balance and the strings with negative balance as two sub-problems for sorting.
For strings with positive balances, if we swap successive strings so that one with smaller 𝑈𝑈𝑈𝑈 goes first, again we have only
strengthened the inequalities. On the other hand, for negative ones this is not so obvious. But if we put this ‘on paper’ we get
this (again for successive strings):
𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖]

 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1]
𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖]

⇒

𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1], because 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] > 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖]
𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] + 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] − 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] + 𝑈𝑈𝑈𝑈[𝑖𝑖] − 𝑈𝑈𝑈𝑈[𝑖𝑖] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖]

Using the above transformation over successive strings, starting from a proper arrangement we can generate a new proper
arrangement – which is also the output of our sort with the above criteria.
Therefore, it is enough to check strings in described order. If for this order balance stays non-negative (and is zero at the end),
the answer is “yes”, but otherwise “no”.

Implementation:

Read the strings and sort them as described,
Check whether balance is non-negative at all points in concatenated string and zero at the end.

Complexity:

Time complexity is obviously 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛) + 𝑁𝑁), where 𝑁𝑁 is the total number of characters in all given strings. Memory
complexity is 𝑂𝑂(𝑁𝑁 + 𝑛𝑛).

50

Problem A: Brackets

Figure 1. We can look at the arrangement as Dyck lattice path with 𝑈𝑈𝑈𝑈[𝑖𝑖] and 𝑈𝑈𝑈𝑈[𝑖𝑖] as jups.

Now we can look at the strings with positive balance and the strings with negative balance as two sub-problems for sorting.
For strings with positive balances, if we swap successive strings so that one with smaller 𝑈𝑈𝑈𝑈 goes first, again we have only
strengthened the inequalities. On the other hand, for negative ones this is not so obvious. But if we put this ‘on paper’ we get
this (again for successive strings):
𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖]

 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1]
𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖]

⇒

𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1], because 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] > 𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖]
𝑆𝑆𝑆𝑆𝑆𝑆[𝑖𝑖 − 1] + 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] − 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖 + 1] + 𝑈𝑈𝑈𝑈[𝑖𝑖] − 𝑈𝑈𝑈𝑈[𝑖𝑖] ≥ 𝑈𝑈𝑈𝑈[𝑖𝑖]

Using the above transformation over successive strings, starting from a proper arrangement we can generate a new proper
arrangement – which is also the output of our sort with the above criteria.
Therefore, it is enough to check strings in described order. If for this order balance stays non-negative (and is zero at the end),
the answer is “yes”, but otherwise “no”.

Implementation:

Read the strings and sort them as described,
Check whether balance is non-negative at all points in concatenated string and zero at the end.

Complexity:

Time complexity is obviously 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛) + 𝑁𝑁), where 𝑁𝑁 is the total number of characters in all given strings. Memory
complexity is 𝑂𝑂(𝑁𝑁 + 𝑛𝑛).

Problem B: Cutting

Problem B: Cutting
Statement:
Given an integer 𝑚𝑚 and an integer sequence a of length 𝑛𝑛, you have to split the given sequence into consecutive
subsequences. The sum of elements in any subsequence must be less than or equal to 𝑚𝑚. Let 𝑀𝑀 be the sum of maximal
elements of the subsequences. Your task is to find the split that minimizes 𝑀𝑀.

Figure 1. One possible cutting for the given example bellow

Input:
The first line contains two positive integers 𝑛𝑛 and 𝑚𝑚, where 𝑛𝑛 is the number of elements in the given sequence and 𝑚𝑚 is
the maximal allowed sum of elements in a subsequence. The following line contains 𝑛𝑛 integers – elements of the
sequence.

Output:
The output consists of one integer:
“-1” (without quotes) if a solution does not exist
otherwise, the minimal sum of maximal elements for any split(𝑀𝑀)

Constraints:
• 1 ≤ n ≤ 100,000
• 1 ≤ m ≤ 10 9
• All elements are in the range [0, 106].

Example input: Example output:
7 14
1 1 1 6 2 6 14

21

> Time and memory limit: 1s / 64MB

51

Problem B: Cutting

Solution and analysis:
Firstly, we can see that a cutting exists if all elements of the given sequence are smaller than or equal to 𝑚𝑚. This is the first
thing that we are going to check. From now on, we are assuming that all elements are not greater than 𝑚𝑚.

Let’s start thinking backwards – not from the sequence itself but from the subsequences. If we denote subsequence
𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑖𝑖+1, … , 𝑎𝑎𝑗𝑗 as 𝑎𝑎[𝑖𝑖, 𝑗𝑗], then in the final cutting the last subsequence has the form 𝑎𝑎[𝑘𝑘,𝑛𝑛] for some 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛. Now we can
say that the final solution is 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎𝑘𝑘,𝑎𝑎𝑘𝑘+1, … ,𝑎𝑎𝑛𝑛} + 𝑑𝑑[𝑘𝑘 − 1], where 𝑑𝑑[𝑘𝑘 − 1] is the optimal cutting for the first 𝑘𝑘 − 1
elements of 𝑎𝑎. This cutting has to be optimal, because otherwise the cutting for the whole sequence would not be optimal
either.

This smells like dynamic programming. Let’s define array 𝑑𝑑 of length 𝑛𝑛 as:

𝑑𝑑 [𝑘𝑘] = optimal value of cutting sequence 𝑎𝑎[1, 𝑘𝑘]

We have the following recurrent relation between the elements of 𝑑𝑑:

𝑑𝑑 [𝑘𝑘] = min
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘]≤𝑖𝑖≤𝑘𝑘

{𝑑𝑑 [𝑖𝑖 − 1] + max{𝑎𝑎[𝑖𝑖, 𝑘𝑘]}},

where 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘] is the minimal index such that the sum of elements of 𝑎𝑎[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘], 𝑘𝑘] is less than or equal to 𝑚𝑚. In other
words, if the element 𝑎𝑎𝑘𝑘 is the right boundary of some subsequence, then its left boundary has to be in the above segment.
For the base of the dynamic programming algorithm, we can define 𝑑𝑑[0] = 0 and 𝑑𝑑[1] = 𝑎𝑎[1]. The final solution is stored in
the element 𝑑𝑑[𝑛𝑛].

52

Problem B: Cutting

Solution and analysis:
Firstly, we can see that a cutting exists if all elements of the given sequence are smaller than or equal to 𝑚𝑚. This is the first
thing that we are going to check. From now on, we are assuming that all elements are not greater than 𝑚𝑚.

Let’s start thinking backwards – not from the sequence itself but from the subsequences. If we denote subsequence
𝑎𝑎𝑖𝑖 ,𝑎𝑎𝑖𝑖+1, … , 𝑎𝑎𝑗𝑗 as 𝑎𝑎[𝑖𝑖, 𝑗𝑗], then in the final cutting the last subsequence has the form 𝑎𝑎[𝑘𝑘,𝑛𝑛] for some 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛. Now we can
say that the final solution is 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎𝑘𝑘,𝑎𝑎𝑘𝑘+1, … ,𝑎𝑎𝑛𝑛} + 𝑑𝑑[𝑘𝑘 − 1], where 𝑑𝑑[𝑘𝑘 − 1] is the optimal cutting for the first 𝑘𝑘 − 1
elements of 𝑎𝑎. This cutting has to be optimal, because otherwise the cutting for the whole sequence would not be optimal
either.

This smells like dynamic programming. Let’s define array 𝑑𝑑 of length 𝑛𝑛 as:

𝑑𝑑 [𝑘𝑘] = optimal value of cutting sequence 𝑎𝑎[1, 𝑘𝑘]

We have the following recurrent relation between the elements of 𝑑𝑑:

𝑑𝑑 [𝑘𝑘] = min
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘]≤𝑖𝑖≤𝑘𝑘

{𝑑𝑑 [𝑖𝑖 − 1] + max{𝑎𝑎[𝑖𝑖, 𝑘𝑘]}},

where 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘] is the minimal index such that the sum of elements of 𝑎𝑎[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘], 𝑘𝑘] is less than or equal to 𝑚𝑚. In other
words, if the element 𝑎𝑎𝑘𝑘 is the right boundary of some subsequence, then its left boundary has to be in the above segment.
For the base of the dynamic programming algorithm, we can define 𝑑𝑑[0] = 0 and 𝑑𝑑[1] = 𝑎𝑎[1]. The final solution is stored in
the element 𝑑𝑑[𝑛𝑛].

Problem B: Cutting

Implementation:

The tricky part of this problem was implementation. Let’s see how we can initialize bounds fast. Array 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is non-
decreasing (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘] ≤ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘 + 1]). When we want to initialize the element 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘], we only have to look in the
segment [𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘 − 1], 𝑘𝑘]. If we accumulate the current sum in this segment, the initialization of the whole array can be
implemented in linear time.

===

01 bound [1] = 1;

02 currentSum = a [1];

03 for k = 2 to n do

04 bound [k] = bound [k – 1];

05 currentSum = currentSum + a [k];

06 while (currentSum> m)

07 currentSum = currentSum – a [bound [i]];

08 bound [i] = bound [i] + 1;

==

Algorithm for bound initialization

What about array 𝑑𝑑? Naive implementation of the above recurrent relation leads to time complexity of 𝑂𝑂(𝑛𝑛2), which is very
slow for our constraints. The key observation is that we do not need all indices from the segment [𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘], 𝑘𝑘] when we
want to find a minimum. We only need indices from the set

𝐼𝐼𝑘𝑘 = {𝑘𝑘, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘]} ∪ {𝑖𝑖 ∈ [𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘] − 1, 𝑘𝑘 − 1]|𝑎𝑎𝑖𝑖 > 𝑎𝑎𝑖𝑖+1, … ,𝑎𝑎𝑘𝑘}

Therefore, we have to check for boundaries and only for elements that are strictly greater than ones before them. This is
intuitively clear, because if we have some maximum in a subsequence we want to stretch to the left as long as we can.
We can store these indices in a list. When we move from 𝑘𝑘-th to (𝑘𝑘 + 1)-th element, we remove only some elements from the
head and some elements from the tail of this list. From the beginning we are going to remove indices that are smaller than
𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏[𝑘𝑘 + 1]. Since every index in the list represents an element that is greater than the ones before, from the end of the list
we are going to remove indices if the corresponding elements are less than or equal to 𝑎𝑎[𝑘𝑘 + 1]. After that we are going to
add new element 𝑘𝑘 at the end of the list. All of this is possible because both the indices in the list and their corresponding
elements are sorted in a strictly increasing order.
And what about the minimum of these elements? Theoretically, this list can be very long. Well, we are going to store values
𝑑𝑑 [𝑖𝑖] + 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[𝑖𝑖 + 1, 𝑘𝑘]} in a heap structure (all of them except for boundaries). When we move to a new element, as we
remove something from the list, we remove the corresponding element from the heap. In the end, only for the last element of
the list, which had the value 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1, 𝑘𝑘 − 1]} before adding the new one, is going to change – it becomes 𝑎𝑎[𝑘𝑘] =
𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 1, 𝑘𝑘]}.

53

Problem B: Cutting
===

01 d [0] = 0 and d [1] = a [1];

02 add in heap (1, a [1]); // index and value

03 add in list 1; // index of elements in heap

04 for k = 2 to n do

05 while first index in list is less than bound [k]

06 remove it from heap;

07 remove it from list;

08 while last element in list is less than or equal to a [k]

09 remove it from heap;

10 remove it from list;

11 if (heap is not empty)

12 remove last element lastElement from heap;

13 add inheap(lastElement, d [lastElement] + a [k]);

14 maxInBound = max (a [k], a [firstElementInList]);

15 d [k] = max (a [k] + d [k – 1], d [bound [k] – 1] + maxInBound, min in heap);

16 add in heap (k, d [k]);

17 add in list (k);

===

Pseudo-code for described algorithm

Complexity:

Initialization of bounds is linear (as we have seen). Every element from the sequence is going to be added to the heap (and
list) only once and removed from it at most once. Initialization of elements 𝑑𝑑 [𝑘𝑘] requires one call for finding a minimum in
the heap. This leads us to total time complexity of 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛).
Memory complexity is 𝑂𝑂(𝑛𝑛 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), because we must store information of positions in heap structure. Also, we have
to pay attention to cumulative sums and use int64 for storing this information.

54

Problem B: Cutting
===

01 d [0] = 0 and d [1] = a [1];

02 add in heap (1, a [1]); // index and value

03 add in list 1; // index of elements in heap

04 for k = 2 to n do

05 while first index in list is less than bound [k]

06 remove it from heap;

07 remove it from list;

08 while last element in list is less than or equal to a [k]

09 remove it from heap;

10 remove it from list;

11 if (heap is not empty)

12 remove last element lastElement from heap;

13 add inheap(lastElement, d [lastElement] + a [k]);

14 maxInBound = max (a [k], a [firstElementInList]);

15 d [k] = max (a [k] + d [k – 1], d [bound [k] – 1] + maxInBound, min in heap);

16 add in heap (k, d [k]);

17 add in list (k);

===

Pseudo-code for described algorithm

Complexity:

Initialization of bounds is linear (as we have seen). Every element from the sequence is going to be added to the heap (and
list) only once and removed from it at most once. Initialization of elements 𝑑𝑑 [𝑘𝑘] requires one call for finding a minimum in
the heap. This leads us to total time complexity of 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛).
Memory complexity is 𝑂𝑂(𝑛𝑛 + 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), because we must store information of positions in heap structure. Also, we have
to pay attention to cumulative sums and use int64 for storing this information.

Problem B: Cutting

Test data:

Test corpus for this problem contains 30 test cases. Short description of test cases is given in Table 1.

Num 𝑛𝑛 𝑚𝑚 maximal
𝑎𝑎 [𝑖𝑖]

Solution Description

01 10 20 15 37 By hand
02 20 1000 46 46 You don't need to cut
03 100 10000 978 5621 Random
04 1000 100000 32746 -1 -1
05 100 1000 452 452 Sum is equal to M
06 10000 100000 100000 834993296 Every element is one subsequence
07 50000 100000000 132767 7830539 ~ 50 subsequences of 1.000 elements
08 99999 100000000 132867 15540259 ~ 100 subsequences of 10.00 elements
09 99999 98765432 19753 296266 ~ 10 subsequences of 10.000 elements
10 99999 99999999 40007 1159863 ~ 10 subsequences of 10.000 elements
11 99999 99999999 32768 556893 Random
12 99999 99999999 532767 273208529 ~ 1000 subsequences of 100 elements
13 99999 99999999 32768 556910 changing big - small subsequence
14 100000 7654321 123456 12345600000 Every element is equal to M
15 1 100 50 50 One element
16 100000 98765432 999987 479320035 Random monotonic subsequences
17 99999 100000000 9999 9999 Many zeros
18 100000 10000 9999 999900000 Monotonic down subsequences
19 99999 67834589 987655 -1 One element M + 1 and all ones
20 80000 100000000 532767 221021568 ~ 10 subsequences of 10.000 elements
21 90000 10000 6012 92936424 Monotonic up subsequences
22 999999 9999999 999998 4064318963217351 Monotonic down subsequences
23 80000 100000000 999982 306422910 Random monotonic subsequences
24 80000 100000000 100 100 Random small
25 80000 100000000 49999 1449530 ~ 20 subsequences of 10.000 elements
26 30000 100 0 0 All zeros
27 10000 1000 999 9990000 All equal to M – 1
28 100000 100000000 999996 355237902 Random monotonic subsequences
29 100000 100000000 504243 528239 ~ 3 subsequences of 30.000 elements
30 100000 100000000 532767 275873972 ~ 1000 subsequences of 1000 elements

55

Problem C: Extrema

Problem C: Extrema
Statement:
Let’s define a function 𝑓𝑓 as 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 , where 𝑎𝑎𝑖𝑖 ∈ [0,1] and ∑ 𝑎𝑎𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 .

Given two points 𝑋𝑋 and 𝑌𝑌 from 𝑅𝑅𝑛𝑛 and value 𝑓𝑓(𝑋𝑋) = 𝐶𝐶, find minimum and maximum value for 𝑓𝑓(𝑌𝑌).

Input:
The first line of input contains the number 𝑛𝑛. The second line contains numbers 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 separated by a space. The third
line contains 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛. The final line contains the number 𝐶𝐶. It is guaranteed that there will always be coefficients 𝑎𝑎𝑖𝑖 for
which 𝑓𝑓(𝑋𝑋) = 𝐶𝐶 satisfying the above conditions.

Output:
The first line of output should contain minimum value for 𝑓𝑓(𝑌𝑌) rounded to two decimal places, and the second line should
contain the maximum value for 𝑓𝑓(𝑌𝑌), also rounded to two decimal places.

Constraints:
• 1 ≤ n ≤ 100,000
• It is guaranteed that there will always be coefficients 𝑎𝑎𝑖𝑖 for which 𝑓𝑓(𝑋𝑋) = 𝐶𝐶 satisfying the above conditions.

Example input: Example output:
3
0 2 1
0 0 1
0.75

0.00
0.75

> Time and memory limit: 1s / 64MB

56

Problem C: Extrema

Problem C: Extrema
Statement:
Let’s define a function 𝑓𝑓 as 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 , where 𝑎𝑎𝑖𝑖 ∈ [0,1] and ∑ 𝑎𝑎𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 .

Given two points 𝑋𝑋 and 𝑌𝑌 from 𝑅𝑅𝑛𝑛 and value 𝑓𝑓(𝑋𝑋) = 𝐶𝐶, find minimum and maximum value for 𝑓𝑓(𝑌𝑌).

Input:
The first line of input contains the number 𝑛𝑛. The second line contains numbers 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 separated by a space. The third
line contains 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛. The final line contains the number 𝐶𝐶. It is guaranteed that there will always be coefficients 𝑎𝑎𝑖𝑖 for
which 𝑓𝑓(𝑋𝑋) = 𝐶𝐶 satisfying the above conditions.

Output:
The first line of output should contain minimum value for 𝑓𝑓(𝑌𝑌) rounded to two decimal places, and the second line should
contain the maximum value for 𝑓𝑓(𝑌𝑌), also rounded to two decimal places.

Constraints:
• 1 ≤ n ≤ 100,000
• It is guaranteed that there will always be coefficients 𝑎𝑎𝑖𝑖 for which 𝑓𝑓(𝑋𝑋) = 𝐶𝐶 satisfying the above conditions.

Example input: Example output:
3
0 2 1
0 0 1
0.75

0.00
0.75

> Time and memory limit: 1s / 64MB

Problem C: Extrema

Solution and analysis:
This problem requires some math skills. At first sight, it seems to be a kind of linear programming problem, but it can be
solved quite elegantly.
We have a function 𝑓𝑓 and we know that it has the form 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = ∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 , where 𝑎𝑎𝑖𝑖 ∈ [0,1] and ∑ 𝑎𝑎𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 . The

coefficients satisfying these conditions are called barycentric. We can easily spot the following property in one-dimensional
space: given 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 and 𝑥𝑥, 𝑥𝑥 ∈ [𝑚𝑚𝑚𝑚𝑚𝑚{𝑥𝑥𝑖𝑖},𝑚𝑚𝑚𝑚𝑚𝑚 {𝑥𝑥𝑖𝑖}] there exists a function 𝑓𝑓 as defined above such that 𝑥𝑥 = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) =
∑ 𝑎𝑎𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 . It is enough to vary coefficients for minimum and maximum of 𝑥𝑥𝑖𝑖 , the rest can be 0. Now we know that 𝐶𝐶 must be

between these two values.
Extending this to the two-dimensional case is harder. This is stated by the following theorem.

Theorem:

Given points (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) and (𝑥𝑥,𝑦𝑦)from 𝑅𝑅2, (𝑥𝑥,𝑦𝑦) are in the convex hull of (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑛𝑛,𝑦𝑦𝑛𝑛) iff there exists a
function 𝑓𝑓 as defined above such that (𝑥𝑥,𝑦𝑦) = (𝑓𝑓(𝑋𝑋), 𝑓𝑓(𝑌𝑌)), where 𝑋𝑋 = (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) and 𝑌𝑌 = (𝑦𝑦1, … ,𝑦𝑦𝑛𝑛).
Again, we can accomplish this by varying just the coefficients 𝑎𝑎𝑖𝑖 for points which are vertices of the convex hull, the rest can
be 0.

From the theorem, we conclude that the possible values for 𝑓𝑓(𝑌𝑌) are just
projections of the points which belong to the convex hull to the 𝑦𝑦-axis. The
additional constraint 𝑓𝑓(𝑋𝑋) = 𝐶𝐶 restricts the set of possible points to the ones
which lie on the intersection of the convex hull and the line 𝑥𝑥 = 𝐶𝐶. This
intersection is a segment (or just a point in extreme case), so the final solution
will be the boundaries of this segment.

Figure 1. Point and corresponding convex hull for points
𝑋𝑋 = (2,2,4,5,5,2,0,0) and 𝑌𝑌 = (2,0,3,5,1,5,3,0)
and value 𝐶𝐶 = 3

Implementation and complexities:

The described idea can be implemented easily: find the convex hull for the given points and find where the line 𝑥𝑥 = 𝐶𝐶
intersects it. Finding the convex hull has the complexity of 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛). Finding the intersections is linear, because we only
need to check for consecutive vertices of the convex hull. This leads to the final complexity of 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛).

57

Problem D: Interval Graph

Problem D: Interval Graph
Statement:
For a set of closed intervals on real line, one the can construct an interval graph. Represent each interval with a different
graph vertex and connect two vertices if and only if two corresponding intervals have common points.
Does the given tree represent an interval graph for some set of intervals?

Input:
The first line contains positive integer 𝑛𝑛 - the number of nodes in a tree. The nodes are numbered by IDs: 0, 1, 2, … ,𝑛𝑛 − 1.
The node 0 is the root node of the tree.
The next 𝑛𝑛 lines describe children for all nodes.
Line 𝑖𝑖 (each od n lines) lists all children of the node with ID 𝑖𝑖.
The first integer in the line is 𝑐𝑐𝑖𝑖, the number of child nodes of node 𝑖𝑖. The next 𝑐𝑐𝑖𝑖 integers in the same line are IDs of those
child nodes.

Output:
The output consists of one line:
“yes” (without quotes) if the given tree represents an interval graph
“no” if it doesn’t

Constraints:
• 1 ≤ n ≤1,000,000

Example input: Example output:
3
1 2
0
1 1

yes

Example input: Example output:
7
31 2 3
14
15
16
0
0
0

no

> Time and memory limit: 3s / 64MB

58

Problem D: Interval Graph

Problem D: Interval Graph
Statement:
For a set of closed intervals on real line, one the can construct an interval graph. Represent each interval with a different
graph vertex and connect two vertices if and only if two corresponding intervals have common points.
Does the given tree represent an interval graph for some set of intervals?

Input:
The first line contains positive integer 𝑛𝑛 - the number of nodes in a tree. The nodes are numbered by IDs: 0, 1, 2, … ,𝑛𝑛 − 1.
The node 0 is the root node of the tree.
The next 𝑛𝑛 lines describe children for all nodes.
Line 𝑖𝑖 (each od n lines) lists all children of the node with ID 𝑖𝑖.
The first integer in the line is 𝑐𝑐𝑖𝑖, the number of child nodes of node 𝑖𝑖. The next 𝑐𝑐𝑖𝑖 integers in the same line are IDs of those
child nodes.

Output:
The output consists of one line:
“yes” (without quotes) if the given tree represents an interval graph
“no” if it doesn’t

Constraints:
• 1 ≤ n ≤1,000,000

Example input: Example output:
3
1 2
0
1 1

yes

Example input: Example output:
7
31 2 3
14
15
16
0
0
0

no

> Time and memory limit: 3s / 64MB

Problem D: Interval Graph

Solution and analysis:
First, note that no three intervals can have a common point. If that were the case, the interval graph would have a triangle
and wouldn’t be a tree.
Now consider one interval and all intervals that have common points with it.
The intervals that are nested in that interval cannot therefore have any more common points with other intervals. They
generate only one edge in the interval graph.
Intervals that are not nested contain one or both end points of the interval we are considering, therefore we can have no
more than two intervals that have common points with considered interval and are not nested in it.
So, if we prune all one-edge sub-graphs corresponding to nested intervals, each vertex in the remaining graph can have at
most degree two. In other words, the graph on Figure 1. can’t be a sub-graph of the pruned graph.

Figure 1. Forbidden structure for interval tree

We can see that if the tree satisfies this property, it is an interval graph. In the pruned graph every edge has degree one or
two (if the graph is connected), therefore it is just a sequence of edges. We can therefore construct a sequence of intervals
that correspond to this graph and include nested intervals for additional one-edge sub-graphs that were pruned.
Conclusion is that not having the graph on Figure 1. for a sub-graph is a necessary and sufficient condition for the tree to be
an interval graph.
Interval trees are a very important subclass of intersection graphs and perfect graphs. The generalization of above statement
is a famous result of Lekkerkerker and Boland given below:
Theorem. A graph is an interval graph if and only if it contains none of the graphs shown in Figure 2. as an induced sub-
graph.

59

Problem D: Interval Graph

Figure 2. Forbidden structures for interval graphs

Implementation:

For the nodes on the first two levels, the described condition is equivalent to not having more than two sub-trees of depth
one or more.
For nodes on deeper levels, the described condition is equivalent to not having more than one sub-tree of depth one or more.
This check could be easily done by depth-first search in linear time.
For simplicity, this could be broken into the following steps:

1. Traverse tree and for each node calculate maximal depth of the sub-tree under it;
2. Traverse tree and for each node calculate the number of children sub-trees with depth one or more;
3. Traverse tree and for each node, check the condition taking in consideration the level of the node.

These steps could be done in one tree traversal.
Since depth of the tree can be up to 1,000,000, recursive DFS cannot be used due to stack limitations. Iterative DFS is not
much harder to implement. For techniques on how to refactor recursion to iteration, a good resource is The Art of Computer
Programming.

Complexity:

Time and memory complexity for DFS are 𝑂𝑂(𝑛𝑛)and 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)) respectively but storing the tree structure requires 𝑂𝑂(𝑛𝑛)
memory. Overall, both memory and time complexity are linear: 𝑂𝑂(𝑛𝑛).

60

Problem D: Interval Graph

Figure 2. Forbidden structures for interval graphs

Implementation:

For the nodes on the first two levels, the described condition is equivalent to not having more than two sub-trees of depth
one or more.
For nodes on deeper levels, the described condition is equivalent to not having more than one sub-tree of depth one or more.
This check could be easily done by depth-first search in linear time.
For simplicity, this could be broken into the following steps:

1. Traverse tree and for each node calculate maximal depth of the sub-tree under it;
2. Traverse tree and for each node calculate the number of children sub-trees with depth one or more;
3. Traverse tree and for each node, check the condition taking in consideration the level of the node.

These steps could be done in one tree traversal.
Since depth of the tree can be up to 1,000,000, recursive DFS cannot be used due to stack limitations. Iterative DFS is not
much harder to implement. For techniques on how to refactor recursion to iteration, a good resource is The Art of Computer
Programming.

Complexity:

Time and memory complexity for DFS are 𝑂𝑂(𝑛𝑛)and 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)) respectively but storing the tree structure requires 𝑂𝑂(𝑛𝑛)
memory. Overall, both memory and time complexity are linear: 𝑂𝑂(𝑛𝑛).

Problem E: Nice Subsequence

Problem E: Nice Subsequence
Statement:
Given an array 𝑎𝑎 of 𝑛𝑛 integers, find the longest nice subsequence of consecutive elements.
The subsequence 𝑎𝑎[𝑖𝑖], … ,𝑎𝑎[𝑗𝑗], 𝑖𝑖 < 𝑗𝑗, is nice if:

1. 𝑎𝑎[𝑖𝑖] ≤ 𝑎𝑎[𝑗𝑗]
2. 𝑎𝑎[𝑖𝑖] ≤ 𝑎𝑎[𝑘𝑘] ≤ 𝑎𝑎[𝑗𝑗], for all 𝑘𝑘 ∈ [𝑖𝑖, 𝑗𝑗]

Input:
First line contains one positive integer 𝑛𝑛, where 𝑛𝑛 is the number of elements in the given array. Each of the next 𝑛𝑛 lines
contain one integer which represents an element of the array.

Output:
The output consists of one integer number:
“-1” (without quotes) if nice subsequence doesn’t exist
Length of the longest nice subsequence

Constraints:
• 2 ≤ n ≤ 1,000,000
• 0 ≤ a[i] ≤ 2⋅10 9

Example input: Example output:
6
1
3
4
2
5
0

5

> Time and memory limit: 3s / 64MB

61

Problem E: Nice Subsequence

Solution and analysis:

First, we can see that a nice subsequence doesn’t exist if the array is monotonically decreasing.
A naïve solution would be to find the longest nice subsequence ending with each index 𝑗𝑗 and then find the longest of those,
but that’s too slow. We need to somehow use the information we have already obtained to speed up the search. For that
purpose, we will create a stack of nice subsequences we have obtained (we will call it 𝑆𝑆). It will initially be empty.

We traverse the array, starting from the right. We want to keep some properties of 𝑆𝑆 invariant:

• All subsequences on the stack will either be nice or have length 1.
• The subsequences on the stack will always be sorted so that their left boundary values (minimums) are decreasing

(the largest value is at the top), and their right boundary values (maximums) are increasing (the smallest value is at
the top).

• The subsequences will be sorted by their left boundary and they will not overlap each other.

We will always keep a “current” monotone subsequence, which we will denote 𝑐𝑐, and as we traverse the array from end to
beginning, as long as the values of the elements are decreasing we can keep adding them to 𝑐𝑐. When we arrive to an
element that breaks monotonicity (it is larger than its neighbor on the right), we want to push 𝑐𝑐 to the stack (monotone
sequences are nice by definition) - but first we have to perform some operations in order to ensure that 𝑆𝑆 will continue to
have the desired properties. Namely:
If 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆)) and 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑜𝑜𝑜𝑜(𝑆𝑆)), the subsequence which spans from the left boundary of 𝑐𝑐 to the right
boundary of 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆) is also nice, so we can expand 𝑐𝑐 to match this subsequence and pop from 𝑆𝑆.
If 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) > 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆)), we can discard 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆), because it means that any subsequence we find in the future cannot be
nice if it stretches further than the right boundary of 𝑐𝑐.
Either of these steps can be repeated several times. Finally, when 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) > 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆))d 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆)), we push 𝑐𝑐
to the stack and continue the traversal.
It is not hard to check that the properties of 𝑆𝑆 we have highlighted will continue to hold after any of these steps are
performed. Of course, we will keep a variable holding the best result we have found so far, and if we come across a nice
subsequence longer than that value during any of these steps, we update the result.
Let’s now try to sketch a proof that, after the entire array is processed, we will have found the correct result. We are only
looking at subsequences on the stack, and we know that they will always be nice, so we will obviously never return a result
larger than the correct one. What remains to be shown is that the longest subsequence will always be found by this
algorithm.

62

Problem E: Nice Subsequence

Solution and analysis:

First, we can see that a nice subsequence doesn’t exist if the array is monotonically decreasing.
A naïve solution would be to find the longest nice subsequence ending with each index 𝑗𝑗 and then find the longest of those,
but that’s too slow. We need to somehow use the information we have already obtained to speed up the search. For that
purpose, we will create a stack of nice subsequences we have obtained (we will call it 𝑆𝑆). It will initially be empty.

We traverse the array, starting from the right. We want to keep some properties of 𝑆𝑆 invariant:

• All subsequences on the stack will either be nice or have length 1.
• The subsequences on the stack will always be sorted so that their left boundary values (minimums) are decreasing

(the largest value is at the top), and their right boundary values (maximums) are increasing (the smallest value is at
the top).

• The subsequences will be sorted by their left boundary and they will not overlap each other.

We will always keep a “current” monotone subsequence, which we will denote 𝑐𝑐, and as we traverse the array from end to
beginning, as long as the values of the elements are decreasing we can keep adding them to 𝑐𝑐. When we arrive to an
element that breaks monotonicity (it is larger than its neighbor on the right), we want to push 𝑐𝑐 to the stack (monotone
sequences are nice by definition) - but first we have to perform some operations in order to ensure that 𝑆𝑆 will continue to
have the desired properties. Namely:
If 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆)) and 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑜𝑜𝑜𝑜(𝑆𝑆)), the subsequence which spans from the left boundary of 𝑐𝑐 to the right
boundary of 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆) is also nice, so we can expand 𝑐𝑐 to match this subsequence and pop from 𝑆𝑆.
If 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) > 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆)), we can discard 𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆), because it means that any subsequence we find in the future cannot be
nice if it stretches further than the right boundary of 𝑐𝑐.
Either of these steps can be repeated several times. Finally, when 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) > 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆))d 𝑚𝑚𝑚𝑚𝑚𝑚(𝑐𝑐) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆)), we push 𝑐𝑐
to the stack and continue the traversal.
It is not hard to check that the properties of 𝑆𝑆 we have highlighted will continue to hold after any of these steps are
performed. Of course, we will keep a variable holding the best result we have found so far, and if we come across a nice
subsequence longer than that value during any of these steps, we update the result.
Let’s now try to sketch a proof that, after the entire array is processed, we will have found the correct result. We are only
looking at subsequences on the stack, and we know that they will always be nice, so we will obviously never return a result
larger than the correct one. What remains to be shown is that the longest subsequence will always be found by this
algorithm.

Problem E: Nice Subsequence

If the longest nice subsequence is the subsequence [𝑖𝑖, 𝑗𝑗], we know that 𝑎𝑎[𝑖𝑖 − 1] > 𝑎𝑎[𝑖𝑖] (or 𝑖𝑖 is the first element) and 𝑎𝑎[𝑗𝑗] >
𝑎𝑎[𝑗𝑗 + 1] (or 𝑗𝑗 is the last element). So, both 𝑎𝑎[𝑖𝑖 − 1] and 𝑎𝑎[𝑗𝑗] will cause breaks in monotonicity, although in general they won’t
be in the same monotone subsequence. This means that we need to make sure that the sequence starting with 𝑖𝑖 (𝑠𝑠𝑖𝑖) will
eventually merge with the sequence ending with 𝑗𝑗 (𝑠𝑠𝑗𝑗). But that is simple: 𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑖𝑖) ≤ 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡𝑡𝑡𝑡(𝑆𝑆)) because otherwise [𝑖𝑖, 𝑗𝑗]
would not be nice at all, so the subsequences between 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 on the stack will either get merged into 𝑠𝑠𝑖𝑖 or be discarded.
Finally, when 𝑠𝑠𝑗𝑗 becomes the top of 𝑆𝑆, 𝑠𝑠𝑖𝑖 will merge with it, because, again, [𝑖𝑖, 𝑗𝑗] being nice implies that 𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑖𝑖) < 𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠𝑗𝑗).
This means that [𝑖𝑖, 𝑗𝑗] will definitely be processed at some point, which means that the proof is finished.

Complexity:

Since the number of monotone subsequences in the array cannot be larger than 𝑛𝑛, the main part of the algorithm essentially
consists of 𝑂𝑂(𝑛𝑛) “push” and 𝑂𝑂(𝑛𝑛) “pop” operations on the stack, making the overall time complexity of the solution linear.

63

Buxkdop F: Panuql

Buxkdop F: Panuql
Tnanopozn:
A boufoin panuql qt a panuql jqnc qznomou odopoznt qz jcqic oaic njx zoqmckxuqzm odopoznt auo uodanqyodw buqpo
(ix-buqpo), azv nco aktxdrno yadro xf oaic odopozn qt muoanou ncaz xzo. Oaic odopozn cat rb nx fxru zoqmckxut.
Wxr auo mqyoz a panuql 𝐴𝐴𝑚𝑚×𝑛𝑛 jqnc qznomou odopoznt 𝑎𝑎𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛.
Icoie qf ncouo olqtnt a boufoin panuql 𝐵𝐵𝑚𝑚×𝑛𝑛 jcouo 𝑏𝑏𝑖𝑖𝑖𝑖 vqyqvot 𝑎𝑎𝑖𝑖𝑖𝑖 fxu oyouw 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛.

Qzbrn:
Nco fqutn dqzo ixznaqzt bxtqnqyo qznomout 𝑚𝑚, 𝑛𝑛 — nco vqpoztqxzt xf nco panuql 𝐴𝐴𝑚𝑚×𝑛𝑛. Oaic xf nco zoln 𝑚𝑚 dqzot
ixznaqzt a tohrozio xf 𝑛𝑛 qznomout tobauanov kw tbaiot, uobuotoznqzm odopoznt 𝑎𝑎𝑖𝑖𝑖𝑖 xf nco panuql 𝐴𝐴𝑚𝑚×𝑛𝑛.

Xrnbrn:
Xrnbrn ixztqtnt xf xzo vqmqn: :
“1” (jqncxrn hrxnot) qf a boufoin panuql olqtnt
“0” qf qn vxotz’n olqtn

Ixztnuaqznt:

• 1 ≤ m, n ≤ 80
• 2 ≤ |aij| ≤ 1,000

Olapbdo qzbrn: Olapbdo xrnbrn:
2 2
6 4
10 9

1

Olapbdo qzbrn:

Olapbdo xrnbrn:

1 3
4 6 9

0

DON’T PANIC ☺

> Nqpo azv popxuw dqpqn: 0.5t / 64PK

64

Buxkdop F: Panuql

Buxkdop F: Panuql
Tnanopozn:
A boufoin panuql qt a panuql jqnc qznomou odopoznt qz jcqic oaic njx zoqmckxuqzm odopoznt auo uodanqyodw buqpo
(ix-buqpo), azv nco aktxdrno yadro xf oaic odopozn qt muoanou ncaz xzo. Oaic odopozn cat rb nx fxru zoqmckxut.
Wxr auo mqyoz a panuql 𝐴𝐴𝑚𝑚×𝑛𝑛 jqnc qznomou odopoznt 𝑎𝑎𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛.
Icoie qf ncouo olqtnt a boufoin panuql 𝐵𝐵𝑚𝑚×𝑛𝑛 jcouo 𝑏𝑏𝑖𝑖𝑖𝑖 vqyqvot 𝑎𝑎𝑖𝑖𝑖𝑖 fxu oyouw 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛.

Qzbrn:
Nco fqutn dqzo ixznaqzt bxtqnqyo qznomout 𝑚𝑚, 𝑛𝑛 — nco vqpoztqxzt xf nco panuql 𝐴𝐴𝑚𝑚×𝑛𝑛. Oaic xf nco zoln 𝑚𝑚 dqzot
ixznaqzt a tohrozio xf 𝑛𝑛 qznomout tobauanov kw tbaiot, uobuotoznqzm odopoznt 𝑎𝑎𝑖𝑖𝑖𝑖 xf nco panuql 𝐴𝐴𝑚𝑚×𝑛𝑛.

Xrnbrn:
Xrnbrn ixztqtnt xf xzo vqmqn: :
“1” (jqncxrn hrxnot) qf a boufoin panuql olqtnt
“0” qf qn vxotz’n olqtn

Ixztnuaqznt:

• 1 ≤ m, n ≤ 80
• 2 ≤ |aij| ≤ 1,000

Olapbdo qzbrn: Olapbdo xrnbrn:
2 2
6 4
10 9

1

Olapbdo qzbrn:

Olapbdo xrnbrn:

1 3
4 6 9

0

DON’T PANIC ☺

> Nqpo azv popxuw dqpqn: 0.5t / 64PK

Buxkdop F: Panuql

Solution and analysis:
The statement of this problem was put through a cipher and presented to the competitors in encrypted form, which they had
to decipher before they could start solving the actual problem.
Since the other eight problems were unencrypted and the texts had the same basic shape, starting by trying to compare the
ciphertext with them was a good idea. It is noticeable that certain words repeat multiple times and looking at the other
problems reveals that they probably correspond to certain important phrases, for example "input", "output", "integer", with
unchanged number of letters in a word. This implies that the cipher is a simple substitution cipher, and reveals the encrypted
values for many of the letters. Going in this direction starts producing text that is already somewhat intelligible, so we are
encouraged to continue: we know where keywords such as "statement" and "problem" are located, and we can guess the
remaining letters in frequently occurring words: "the", "line". The rest is easy: most words will have only one of two letters
left encrypted, and simple common sense should be enough to finish the job. Also, a cool thing is that when you translate
“DON’T PANIC” you get “LET’ MATCH”.

Translated problem looks like this:

Statement:

A perfect matrix is a matrix with integer elements in which each two neighboring elements are relatively prime (co-prime),
and the absolute value of each element is greater than one. Each element has up to four neighbors.
You are given a matrix 𝐴𝐴𝑚𝑚×𝑛𝑛 with integer elements 𝑎𝑎𝑖𝑖𝑖𝑖 , 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛.
Check if there exists a perfect matrix 𝐵𝐵𝑚𝑚×𝑛𝑛 where 𝑏𝑏𝑖𝑖𝑖𝑖 divides 𝑎𝑎𝑖𝑖𝑖𝑖 for every 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛.

Input:

The first line contains positive integers 𝑚𝑚, 𝑛𝑛 — the dimensions of the matrix 𝐴𝐴𝑚𝑚×𝑛𝑛. Each of the next 𝑚𝑚 lines contain a
sequence of 𝑛𝑛 integers separated by spaces, representing elements 𝑎𝑎𝑖𝑖𝑖𝑖 of the matrix 𝐴𝐴𝑚𝑚×𝑛𝑛.

Output:

Output consists of one digit:
• “1” (without quotes) if a perfect matrix exists
• “0” if it doesn’t exist

The condition that neighboring elements are relatively prime can be stated in the form that neighboring elements cannot
have the same prime factors. Since 𝑏𝑏𝑖𝑖𝑖𝑖 divides 𝑎𝑎𝑖𝑖𝑖𝑖, candidates for prime factors for 𝑏𝑏𝑖𝑖𝑖𝑖 are prime factors of 𝑎𝑎𝑖𝑖𝑖𝑖. Clearly, if there
exists a perfect matrix, we can transform it to another perfect matrix where all 𝑏𝑏𝑖𝑖𝑖𝑖 are prime numbers, by omitting all but one
prime factors of 𝑏𝑏𝑖𝑖𝑖𝑖. Resulting perfect matrix has all prime elements and neighboring elements are different. Therefore, it is
sufficient to check if a perfect matrix with prime elements and described properties exists to get the final answer.
In view of these conclusions, problem can be restated in the following way: For every element in the original matrix А, pick
one of its prime factors, so that two neighboring elements have different factors picked. This is closely related to the graph
coloring problem, which is NP, so backtrack is the way to go.

65

Buxkdop F: Panuql

Constraints:

• 1 ≤ m, n ≤ 80
• 2 ≤ |aij| ≤ 1,000

Implementation:

The most naive backtrack implementation is too slow. A few improvements can be made. Prime numbers up to 1,000 can be
pre-computed and included in the source file.
All numbers up to 1,000 can also be factored to prime factors offline and included in the source file. If some element 𝑎𝑎𝑖𝑖𝑖𝑖 has
a unique prime divisor among its neighbors, this prime divisor can be picked for the perfect matrix.
If some element 𝑎𝑎𝑖𝑖𝑖𝑖 has only one prime divisor, this prime divisor cannot be picked from its neighbors.
The last observation is the crucial one for speeding up the backtrack algorithm. What should be noted here is that once a
prime divisor is removed from the list of possible primes for all neighboring elements, the process can continue if one of the
neighboring elements is left with only one prime divisor. This can propagate as long as there are changes made.

Complexity:

Time complexity is exponential. Memory complexity in most implementations shouldn’t be larger than 𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚), where 𝑝𝑝 is
the number of different prime factors.

66

Buxkdop F: Panuql

Constraints:

• 1 ≤ m, n ≤ 80
• 2 ≤ |aij| ≤ 1,000

Implementation:

The most naive backtrack implementation is too slow. A few improvements can be made. Prime numbers up to 1,000 can be
pre-computed and included in the source file.
All numbers up to 1,000 can also be factored to prime factors offline and included in the source file. If some element 𝑎𝑎𝑖𝑖𝑖𝑖 has
a unique prime divisor among its neighbors, this prime divisor can be picked for the perfect matrix.
If some element 𝑎𝑎𝑖𝑖𝑖𝑖 has only one prime divisor, this prime divisor cannot be picked from its neighbors.
The last observation is the crucial one for speeding up the backtrack algorithm. What should be noted here is that once a
prime divisor is removed from the list of possible primes for all neighboring elements, the process can continue if one of the
neighboring elements is left with only one prime divisor. This can propagate as long as there are changes made.

Complexity:

Time complexity is exponential. Memory complexity in most implementations shouldn’t be larger than 𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚), where 𝑝𝑝 is
the number of different prime factors.

Problem G: Operations

Problem G: Operations
Statement:
You are given an array of 𝑛𝑛 characters in the form of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷…𝐷𝐷𝐷𝐷𝐷𝐷 (𝑛𝑛 is odd) where:

• 𝐷𝐷 ∈ {‘0’...’9’} and
• S ∈ {‘+’, ’-‘, ’=’, ’>’, ’<’};

Find out the maximal number of non-overlapping correct expressions (a correct expression is a substring of the given
string which starts and ends with a digit, has exactly one comparison operator (’=’ or ’>’ or ’<’), and is mathematically
correct).

Input:
The first line contains a positive integer 𝑛𝑛. The next line consists of 𝑛𝑛 characters in the form described above (without any
spaces between characters).

Output:
The output consists of the integer number which represents the maximal number of non-overlapping correct expressions.

Constraints:
• n is odd
• n < 5,000,000

Example input: Example output:
7
7–5<3=5

1

Example input: Example output:
11
2+5<6–4<5=3

2

> Time and memory limit: 3s / 64MB

67

Problem G: Operations

Solution and analysis:
It is not hard to check that the maximal number of correct expressions can be achieved using the following algorithm
(Greedy algorithm):

• Find the first comparison operator for which we can obtain the correct expression, take the correct expression which
contains that comparison operator and for which the rightmost character has the smallest index in the original
array.

• Start looking for new correct expression from the position of first digit after the previously found correct expression.

Checking if it exists and finding the optimal correct expression (optimal in the meaning described above) that contains some
fixed comparison operator and that starts from some particular position (on the left side of comparison operator) can be
done in the following way:
First, we calculate all possible values on the left side of the comparison operator. Then we scan digit by digit on the right side
of the comparison operator, calculating the value of the expression on the right side by considering the digit and checking if
that value, with the comparison operator and any value from the left side, gives a true statement.
Checking if a value from right side, the comparison operator and any value from the left give a true statement can be done
by sorting values from the left side in non-decreasing order. Then, if the comparison operator is ‘=’, use binary search to
check if that value exists in a set from left. If the comparison operator is ‘<’, check if the value from the right is greater than
the first value from left in the sorted array, and in case when the comparison operator is ‘>’, check if the value from the right
is less than the last value from the left in the sorted array. Alternatively, since the minimal possible value on the left is −9 ⋅
𝑛𝑛−1
2 and the maximal is 9 ⋅ 𝑛𝑛−12 , another approach would be to have an array of 9 ⋅ (𝑛𝑛 − 1) + 1 elements, so that for each

value calculated on the left we join one element of the array, and while filling that array we can calculate the minimal and
maximal value from all those that we were using in filling, so we can easily check if a value from the right exists on the left,
just by looking in the corresponding place in the new array. If the value from the right is greater than some value from the
left we can check using min, and whether the value from the right is less than some value from left we can check using max.
We can also use min and max for initializing array for each new comparison operator.

Example:

3 + 8 – 6 = 2 + 4 < 3 + 2 First, we calculate values on the left side of ‘=’. These are 6,2,5. Then we go from ‘=’ to the
right. The first potential value is 2. Check if it is found in the set from the left. If it is, meaning that we found one correct
expression, start looking for a new one from ‘4’. The next comparison operator is ‘<’. The only value on its left side is 4. The first
digit on the right is 3. Considering that 3 is not greater than any value from the left (in this case just 4) we continue. The next
digit is 2, so the next potential value is 5. Since 5 is greater than 4, we do have a new correct expression. We get to the end of
the array, so the maximal number of non-overlapping correct expressions is two.

Complexity:

It is obvious that the complexity of the solution which uses a sorted array is 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)) and that the complexity of the
second solution is 𝑂𝑂(𝑛𝑛).
Memory complexity is 𝑂𝑂(𝑛𝑛) in either case.

68

Problem G: Operations

Solution and analysis:
It is not hard to check that the maximal number of correct expressions can be achieved using the following algorithm
(Greedy algorithm):

• Find the first comparison operator for which we can obtain the correct expression, take the correct expression which
contains that comparison operator and for which the rightmost character has the smallest index in the original
array.

• Start looking for new correct expression from the position of first digit after the previously found correct expression.

Checking if it exists and finding the optimal correct expression (optimal in the meaning described above) that contains some
fixed comparison operator and that starts from some particular position (on the left side of comparison operator) can be
done in the following way:
First, we calculate all possible values on the left side of the comparison operator. Then we scan digit by digit on the right side
of the comparison operator, calculating the value of the expression on the right side by considering the digit and checking if
that value, with the comparison operator and any value from the left side, gives a true statement.
Checking if a value from right side, the comparison operator and any value from the left give a true statement can be done
by sorting values from the left side in non-decreasing order. Then, if the comparison operator is ‘=’, use binary search to
check if that value exists in a set from left. If the comparison operator is ‘<’, check if the value from the right is greater than
the first value from left in the sorted array, and in case when the comparison operator is ‘>’, check if the value from the right
is less than the last value from the left in the sorted array. Alternatively, since the minimal possible value on the left is −9 ⋅
𝑛𝑛−1
2 and the maximal is 9 ⋅ 𝑛𝑛−12 , another approach would be to have an array of 9 ⋅ (𝑛𝑛 − 1) + 1 elements, so that for each

value calculated on the left we join one element of the array, and while filling that array we can calculate the minimal and
maximal value from all those that we were using in filling, so we can easily check if a value from the right exists on the left,
just by looking in the corresponding place in the new array. If the value from the right is greater than some value from the
left we can check using min, and whether the value from the right is less than some value from left we can check using max.
We can also use min and max for initializing array for each new comparison operator.

Example:

3 + 8 – 6 = 2 + 4 < 3 + 2 First, we calculate values on the left side of ‘=’. These are 6,2,5. Then we go from ‘=’ to the
right. The first potential value is 2. Check if it is found in the set from the left. If it is, meaning that we found one correct
expression, start looking for a new one from ‘4’. The next comparison operator is ‘<’. The only value on its left side is 4. The first
digit on the right is 3. Considering that 3 is not greater than any value from the left (in this case just 4) we continue. The next
digit is 2, so the next potential value is 5. Since 5 is greater than 4, we do have a new correct expression. We get to the end of
the array, so the maximal number of non-overlapping correct expressions is two.

Complexity:

It is obvious that the complexity of the solution which uses a sorted array is 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙(𝑛𝑛)) and that the complexity of the
second solution is 𝑂𝑂(𝑛𝑛).
Memory complexity is 𝑂𝑂(𝑛𝑛) in either case.

Problem H: Travel ‘n’ sleep

Problem H: Travel ‘n’ sleep
Statement:
You are the manager of a company and you want to send some of your employees to a big company meeting, which
starts 𝑡𝑡 days from now. The city where the meeting will be held is very far away from your headquarters, so they will have
to travel for a couple of days, passing through some other cities and making pauses to sleep and rest during the journey.
You have a map that assigns numbers between 1 and 𝑛𝑛 to the cities and shows which of these cities have direct routes
between each other. All the employees start from your headquarters (city 1) on the first day. On any given day, each
employee can choose either to travel between two connected cities or to stay where he is and rest, and they all have to
reach the meeting place (city 𝑛𝑛) and must not be late for the meeting.
There is just one small problem: your employees hate each other, so you can never allow two or more of them to be in the
same city at the same time (except at the start and the end of their journeys, of course). It is allowed for someone to enter
a city on the same day when someone else is leaving, however. You kind of hate all of them too, so you don’t want to
allow anyone to stay in your headquarters or to return there during the journey.
The meeting is quite important, so you would like to send as many people there as possible, and now you want to
calculate exactly how many is that.

Input:
The first line contains three numbers, 𝑛𝑛, 𝑡𝑡 and 𝑚𝑚. Each of the following 𝑚𝑚 lines contain two different integers, the numbers
of connected towns. All routes are two-way.

Output:
The output consists of exactly one non-negative integer, the maximal number of people that can reach town 𝑛𝑛 from town
1 in 𝑡𝑡 or less days.

Constraints:
• 2 ≤ n ≤ 50
• 1 ≤ t ≤ 30
• 1 ≤ m ≤ 500

69

Problem H: Travel ‘n’ sleep

Example input: Example output:
4 2 4
1 2
1 3
2 4
3 4

2

Explanation:
On the first day, the first person can go to city 2 and the second can go to city 3, and they will both reach city 4 on the
second day.

> Time and memory limit: 1s / 64MB

70

Problem H: Travel ‘n’ sleep

Example input: Example output:
4 2 4
1 2
1 3
2 4
3 4

2

Explanation:
On the first day, the first person can go to city 2 and the second can go to city 3, and they will both reach city 4 on the
second day.

> Time and memory limit: 1s / 64MB

Problem H: Travel ‘n’ sleep

Solution and analysis:
Looking at the problem statement carefully, it is noticeable that this problem is fairly similar to the problem of finding
maximum flow in a graph. There are a few difficulties, however. Paths in our graph depend on a time component, while
maximum flow assumes that edges have constant capacities. Also, we need to make sure that only one path can include any
single vertex at a point in time. So what we need to do is try to find a way to transform our graph into one that is more
suited to the max-flow constraints.
First, we will transform every vertex 𝑣𝑣 of the original graph (except one!) into 𝑡𝑡 vertices of the form (𝑣𝑣, 𝑡𝑡𝑖𝑖), with the idea that
one vertex of the new graph will represent a single point in space and time. With this, the original graph is turned into a
graph in which we always know whether a particular route is available or not. To be more precise, for each edge 𝑢𝑢𝑢𝑢 in the
original graph, the new graph will have directed edges from vertex (𝑢𝑢, 𝑡𝑡𝑖𝑖) to (𝑣𝑣, 𝑡𝑡𝑖𝑖 + 1) and from (𝑣𝑣, 𝑡𝑡𝑖𝑖) to (𝑢𝑢, 𝑡𝑡𝑖𝑖 + 1) for 𝑡𝑡𝑖𝑖
between 0 and 𝑡𝑡 − 1. We also have to account for the possibility of staying in the same city on a particular day, so every
vertex (𝑢𝑢, 𝑡𝑡𝑖𝑖) should also have an edge towards (𝑢𝑢, 𝑡𝑡𝑖𝑖 + 1) for 𝑡𝑡𝑖𝑖 < 𝑡𝑡. We will not do this for city 1, however, in order to
eliminate staying in this city or returning to it later.

Figure 1. Vertex transformation with time parameter

Now we have a graph we can traverse without paying special attention to the time component. The other problem is
ensuring that no two people can be in the same city on the same day, and we can do this using another easy trick to
transform the graph: we split every vertex 𝑤𝑤 = (𝑣𝑣, 𝑡𝑡𝑖𝑖) into an “in” vertex 𝑤𝑤𝑖𝑖𝑖𝑖 and an “out” vertex 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜, and add an edge of
capacity 1 from 𝑤𝑤𝑖𝑖𝑖𝑖 to 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜. All edges that went to 𝑣𝑣 should be redirected to 𝑤𝑤𝑖𝑖𝑖𝑖, while all edges that went out from 𝑤𝑤 should
now start from 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜.
The only thing remaining is to define the starting and the finishing vertex (the source and the sink) for the flow in our new
graph. The source is easy: it is the out vertex corresponding to city 1, where everyone has to start. We do not have a single
finishing vertex, however - all vertices corresponding to city 𝑛𝑛 are valid finishing points. We will get around this by adding yet
another (!) vertex, 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , and adding edges of unlimited capacity from all vertices (𝑣𝑣, 𝑡𝑡𝑖𝑖)𝑖𝑖𝑛𝑛 to 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. (If “unlimited” is a
problem for the computer to understand, any relatively large number will do.) It is now ensured that the solution to the
problem is the maximum flow of the transformed graph.

71

Problem H: Travel ‘n’ sleep

Complexity:

The constraints are such that most standard algorithms for finding maximum flow will work, so feel free to pick your favorite
one. For example, the Edmonds–Karp algorithm is relatively easy to implement, and its complexity is 𝑂𝑂(𝑉𝑉 ⋅ 𝐸𝐸2)for a graph
with 𝑉𝑉 vertices and 𝐸𝐸 edges. The number of vertices in the transformed graph is approximately 𝑉𝑉 = 2𝑛𝑛𝑛𝑛, while the number of
edges is approximately 𝐸𝐸 = (𝑚𝑚 + 𝑛𝑛) ⋅ 𝑡𝑡. This looks like bad news, but a closer look at the algorithm reveals that it consists of
iterating breadth-first searches (𝑂𝑂(𝐸𝐸) time), and that each iteration augments the flow. In the general case the number of
iterations can be 𝑂𝑂(𝑉𝑉 ⋅ 𝐸𝐸), but here it is easy to see that the flow can never be larger than 𝑛𝑛 − 1, since only 𝑛𝑛 − 1 people have
a city to go to on any given day. This means that the overall time complexity is actually 𝑂𝑂(𝐸𝐸 ⋅ 𝑛𝑛), which reduces to
𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚), and that should be well within the time limit. The space complexity primarily depends on the size of the transformed
graph, which, if we use lists of edges for storage, is 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) = 𝑂𝑂((𝑚𝑚 + 3𝑛𝑛) ⋅ 𝑡𝑡).

72

Problem H: Travel ‘n’ sleep

Complexity:

The constraints are such that most standard algorithms for finding maximum flow will work, so feel free to pick your favorite
one. For example, the Edmonds–Karp algorithm is relatively easy to implement, and its complexity is 𝑂𝑂(𝑉𝑉 ⋅ 𝐸𝐸2)for a graph
with 𝑉𝑉 vertices and 𝐸𝐸 edges. The number of vertices in the transformed graph is approximately 𝑉𝑉 = 2𝑛𝑛𝑛𝑛, while the number of
edges is approximately 𝐸𝐸 = (𝑚𝑚 + 𝑛𝑛) ⋅ 𝑡𝑡. This looks like bad news, but a closer look at the algorithm reveals that it consists of
iterating breadth-first searches (𝑂𝑂(𝐸𝐸) time), and that each iteration augments the flow. In the general case the number of
iterations can be 𝑂𝑂(𝑉𝑉 ⋅ 𝐸𝐸), but here it is easy to see that the flow can never be larger than 𝑛𝑛 − 1, since only 𝑛𝑛 − 1 people have
a city to go to on any given day. This means that the overall time complexity is actually 𝑂𝑂(𝐸𝐸 ⋅ 𝑛𝑛), which reduces to
𝑂𝑂(𝑚𝑚𝑚𝑚𝑚𝑚), and that should be well within the time limit. The space complexity primarily depends on the size of the transformed
graph, which, if we use lists of edges for storage, is 𝑂𝑂(𝑉𝑉 + 𝐸𝐸) = 𝑂𝑂((𝑚𝑚 + 3𝑛𝑛) ⋅ 𝑡𝑡).

Problem I: Queen

Problem I: Queen
Statement:
Compute how many squares on average does a queen attack on a generalized chess board 𝑛𝑛 × 𝑛𝑛.
The queen attacks a square if it is on the same row, column or diagonal. For example, the queen denoted by the letter Q
in the image bellow attacks 17 squares marked with dots:

 ● ●

● ● ●

● Q ● ● ● ●

● ● ●

 ● ●

 ● ●

Input:
The first line contains positive integer 𝑛𝑛, the number of lines and columns of a board.

Output:
The output consists of one real number rounded to exactly three decimal places, the average number of fields attacked by
a queen.

Constraints:
• 1 ≤ 𝑛𝑛 ≤ 1,000,000

Example input: Example output:
3 6.222

> Time and memory limit: 0.5s / 64MB

73

Problem I: Queen

Solution and analysis:
From each of 𝑛𝑛 ∙ 𝑛𝑛 fields, a queen attacks 𝑛𝑛 − 1 fields in its row, and 𝑛𝑛 − 1 in its column.
Let’s now count the fields on the same up-left to down-right diagonal. Counting diagonal by diagonal, we get:

𝐷𝐷 = 2 ∙ 1 + 3 ∙ 2 + ⋯+ 𝑛𝑛(𝑛𝑛 − 1) + (𝑛𝑛 − 1)(𝑛𝑛 − 2) + ⋯+ 3 ∙ 1 + 2 ∙ 1

For up-right to down-left diagonals we obviously obtain the same result. This gives the total number of fields that are
attacked from all positions of the queen:

𝑆𝑆 = 2𝐷𝐷 + 𝑛𝑛2(2𝑛𝑛 − 2)

After summation, we obtain:

𝑆𝑆 = 10𝑛𝑛3 − 12𝑛𝑛2 + 2 𝑛𝑛
3

and the average number of attacked fields is:

𝑀𝑀 = 𝑆𝑆
𝑛𝑛2 =

10𝑛𝑛 − 12 + 2
𝑛𝑛

3

Summation can be done by using math, or a computer program. In the latter case, time complexity will be linear (instead of
constant) and care should be taken of overflow / precision.

Implementation:

Trivial: just read 𝑛𝑛 and write
10𝑛𝑛−12 +2𝑛𝑛

3 .

Complexity

As mentioned before, time complexity is 𝑂𝑂(1)if computation is done mathematically, and 𝑂𝑂(𝑛𝑛)if computation is done
programmatically.
Memory complexity is 𝑂𝑂(1) in any case.

Test data:

The case 𝑛𝑛 = 1 is an interesting example, so it should be included. Other tests should include odd and even numbers, as well
as small and big numbers, to check different cases, time complexity and computation accuracy.

Problem I: Queen

bubble cup 4

74

Problem I: Queen

Solution and analysis:
From each of 𝑛𝑛 ∙ 𝑛𝑛 fields, a queen attacks 𝑛𝑛 − 1 fields in its row, and 𝑛𝑛 − 1 in its column.
Let’s now count the fields on the same up-left to down-right diagonal. Counting diagonal by diagonal, we get:

𝐷𝐷 = 2 ∙ 1 + 3 ∙ 2 + ⋯+ 𝑛𝑛(𝑛𝑛 − 1) + (𝑛𝑛 − 1)(𝑛𝑛 − 2) + ⋯+ 3 ∙ 1 + 2 ∙ 1

For up-right to down-left diagonals we obviously obtain the same result. This gives the total number of fields that are
attacked from all positions of the queen:

𝑆𝑆 = 2𝐷𝐷 + 𝑛𝑛2(2𝑛𝑛 − 2)

After summation, we obtain:

𝑆𝑆 = 10𝑛𝑛3 − 12𝑛𝑛2 + 2 𝑛𝑛
3

and the average number of attacked fields is:

𝑀𝑀 = 𝑆𝑆
𝑛𝑛2 =

10𝑛𝑛 − 12 + 2
𝑛𝑛

3

Summation can be done by using math, or a computer program. In the latter case, time complexity will be linear (instead of
constant) and care should be taken of overflow / precision.

Implementation:

Trivial: just read 𝑛𝑛 and write
10𝑛𝑛−12 +2𝑛𝑛

3 .

Complexity

As mentioned before, time complexity is 𝑂𝑂(1)if computation is done mathematically, and 𝑂𝑂(𝑛𝑛)if computation is done
programmatically.
Memory complexity is 𝑂𝑂(1) in any case.

Test data:

The case 𝑛𝑛 = 1 is an interesting example, so it should be included. Other tests should include odd and even numbers, as well
as small and big numbers, to check different cases, time complexity and computation accuracy.

Problem I: Queen

bubble cup 4

Problem A: Card

Problem A: Card
Statement:
Mike often needs to know if he could place a rectangular card of size 𝑎𝑎 × 𝑏𝑏 into an envelope of size 𝑐𝑐 × 𝑑𝑑. In order to be
faster, Mike doesn’t really try to put a card into an envelope, he just places a card on the table and then tries to cover it
with an envelope. Of course, both the card and the envelope can be rotated, but they cannot be folded.
Now, Mike wants to be even faster. He decided to find the answers for all sizes of cards and envelopes he operates with.
That’s where you jump in. Your program should compute the answer for one particular case. The program should work
the same way Mike does his tests, so in boundary cases the answer is “yes”.

Input:
The first line contains four integers 𝑎𝑎,𝑏𝑏 𝑐𝑐, and 𝑑𝑑 delimited by a space.

Constraints:
• a, b, c, d < 2⋅10 9

Output:
The output contains only one string: “yes” or “no” (without quotes).

Example input: Example output:
2 3 3 4 yes

> Time and memory limit: 0.5s / 64MB

76

Problem A: Card

Problem A: Card
Statement:
Mike often needs to know if he could place a rectangular card of size 𝑎𝑎 × 𝑏𝑏 into an envelope of size 𝑐𝑐 × 𝑑𝑑. In order to be
faster, Mike doesn’t really try to put a card into an envelope, he just places a card on the table and then tries to cover it
with an envelope. Of course, both the card and the envelope can be rotated, but they cannot be folded.
Now, Mike wants to be even faster. He decided to find the answers for all sizes of cards and envelopes he operates with.
That’s where you jump in. Your program should compute the answer for one particular case. The program should work
the same way Mike does his tests, so in boundary cases the answer is “yes”.

Input:
The first line contains four integers 𝑎𝑎,𝑏𝑏 𝑐𝑐, and 𝑑𝑑 delimited by a space.

Constraints:
• a, b, c, d < 2⋅10 9

Output:
The output contains only one string: “yes” or “no” (without quotes).

Example input: Example output:
2 3 3 4 yes

> Time and memory limit: 0.5s / 64MB

Problem A: Card

Solution and analysis:
All we need to do is to distinguish between several cases. To simplify the analysis, let’s first sort pairs (𝑎𝑎, 𝑏𝑏) and (𝑐𝑐,𝑑𝑑) so that
𝑎𝑎 ≤ 𝑏𝑏, 𝑐𝑐 ≤ 𝑑𝑑.

• Case 1: 𝒂𝒂 > 𝒄𝒄
• In this case the answer is clearly no, since any 𝑦𝑦-projection of the card is bigger than 𝑐𝑐.
• Case 2: 𝒂𝒂 ≤ 𝒄𝒄, 𝒃𝒃 ≤ 𝒅𝒅
• In this case card is easily covered with the envelope, for example by matching centers and aligning card and

envelope axes, so the answer is yes;
• Case 3: 𝒂𝒂 ≤ 𝒄𝒄, 𝒃𝒃 > 𝒅𝒅, 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 > 𝒄𝒄𝟐𝟐 + 𝒅𝒅𝟐𝟐
• In this case the card diagonal 𝐷𝐷𝐶𝐶 = √𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 cannot be covered with the envelope, because the envelope diagonal

𝐷𝐷𝐸𝐸 = √𝒄𝒄𝟐𝟐 + 𝒅𝒅𝟐𝟐 is shorter than 𝐷𝐷𝐶𝐶 . Therefore, the answer is no.
• Case 4: 𝒂𝒂 ≤ 𝒄𝒄, 𝒃𝒃 > 𝒅𝒅, 𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐 ≤ 𝒄𝒄𝟐𝟐 + 𝒅𝒅𝟐𝟐
• This is the remaining case. Now we have 𝑑𝑑 < 𝑏𝑏 < 𝐷𝐷𝐶𝐶 ≤ 𝐷𝐷𝐸𝐸 and we need to try to put the envelope’s diagonal over

the card. Consider the circle centered at envelope center and having radius 𝐷𝐷𝐶𝐶2 . It intersects all four sides of the
envelope and we need to check if the distance between the nearest two intersection points is bigger or equal to 𝑎𝑎. If
so, the answer is yes, otherwise no.

Time complexity of this algorithm is constant – 𝑂𝑂(1).

Test data:

Test corpus for this problem contains 10 test cases constructed with following methods:
• several tests with different orders of side sizes
• tests with boundary conditions (for example card and envelope being of equal size)
• test in which the card tightly fits into the envelope diagonally
• test in which the card doesn’t fit diagonally, but it would if it was just a bit smaller

77

Problem B: Rook

Problem B: Rook
Statement:
There is a generalized chess board of size (𝑛𝑛,𝑛𝑛). A rook should move from square (1, 1) to square (𝑛𝑛,𝑛𝑛). In every move,
exactly one coordinate must increase by 1 or more. There are also 𝑚𝑚 occupied squares on the board, so the rook cannot
be placed on any of them and cannot jump over them. Squares (1, 1) and (𝑛𝑛,𝑛𝑛) are not occupied.

In how many ways can the rook reach the square (𝑛𝑛,𝑛𝑛)?

Input:
The first line contains two positive integers 𝑛𝑛 and 𝑚𝑚 delimited by a space,. In each of the next 𝑚𝑚 lines there are two
positive integers, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 , coordinates of 𝑖𝑖𝑡𝑡ℎ occupied square, 𝑖𝑖 = 1, 2, …𝑚𝑚.

Constraints:
• n ≤ 5,000
• m ≤ 100,000
• 1 ≤ xi, yi ≤n

Output:
The output contains number of different rook paths, as described above. If this number is greater than 1 million, you
should only output its last 6 digits.

Example input: Example output:
4 2
3 3
4 1

48

> Time and memory limit: 2s / 64MB

78

Problem B: Rook

Problem B: Rook
Statement:
There is a generalized chess board of size (𝑛𝑛,𝑛𝑛). A rook should move from square (1, 1) to square (𝑛𝑛,𝑛𝑛). In every move,
exactly one coordinate must increase by 1 or more. There are also 𝑚𝑚 occupied squares on the board, so the rook cannot
be placed on any of them and cannot jump over them. Squares (1, 1) and (𝑛𝑛,𝑛𝑛) are not occupied.

In how many ways can the rook reach the square (𝑛𝑛,𝑛𝑛)?

Input:
The first line contains two positive integers 𝑛𝑛 and 𝑚𝑚 delimited by a space,. In each of the next 𝑚𝑚 lines there are two
positive integers, 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 , coordinates of 𝑖𝑖𝑡𝑡ℎ occupied square, 𝑖𝑖 = 1, 2, …𝑚𝑚.

Constraints:
• n ≤ 5,000
• m ≤ 100,000
• 1 ≤ xi, yi ≤n

Output:
The output contains number of different rook paths, as described above. If this number is greater than 1 million, you
should only output its last 6 digits.

Example input: Example output:
4 2
3 3
4 1

48

> Time and memory limit: 2s / 64MB

Problem B: Rook

Solution and analysis:
Let’s denote 𝑤𝑤𝑥𝑥,𝑦𝑦 the number of ways in which the rook can reach the square (𝑥𝑥,𝑦𝑦). Then 𝑤𝑤1,1 = 1 and

𝑤𝑤𝑥𝑥,𝑦𝑦 = ∑ 𝑤𝑤𝑖𝑖,𝑦𝑦
𝑥𝑥−1

𝑖𝑖=𝑥𝑥0
+ ∑ 𝑤𝑤𝑥𝑥,𝑗𝑗

𝑦𝑦−1

𝑗𝑗=𝑦𝑦0

where:

𝑥𝑥0 = {

max{ 𝑖𝑖 ∶ 1 ≤ 𝑖𝑖 < 𝑥𝑥,𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑖𝑖,𝑦𝑦) 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜} 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,
1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑦𝑦0 = {

max{ 𝑗𝑗 ∶ 1 ≤ 𝑗𝑗 < 𝑦𝑦,𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 (𝑥𝑥, 𝑗𝑗) 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜} 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,
1 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Using the formula for each square directly gives an algorithm that works in 𝑂𝑂(𝑛𝑛3) time, which is too slow for limitations
given in the problem statement.
Introducing two new matrices:

𝑎𝑎𝑥𝑥,𝑦𝑦 = ∑𝑤𝑤𝑖𝑖,𝑦𝑦

𝑥𝑥−1

𝑖𝑖=𝑥𝑥0

 𝑏𝑏𝑥𝑥,𝑦𝑦 = ∑ 𝑤𝑤𝑥𝑥,𝑗𝑗

𝑦𝑦−1

𝑗𝑗=𝑦𝑦0

for each square (𝑥𝑥,𝑦𝑦) we can compute 𝑎𝑎𝑥𝑥,𝑦𝑦, 𝑏𝑏𝑥𝑥,𝑦𝑦,𝑤𝑤𝑥𝑥,𝑦𝑦 in 𝑂𝑂(1) time, which gives the following 𝑂𝑂(𝑛𝑛2) algorithm:

===
w[1][1] = 1

for i = 1..n

 for j = 1..n

 if (square (i, j) is occupied

 a[i][j] = 0;

 b[i][j] = 0;

 w[i][j] = 0;

 else

 a[i][j] = (a[i-1][j] + w[i-1][j]) mod 1000000;

 b[i][j] = (b[i][j-1] + w[i][j-1]) mod 1000000;

 w[i][j] += (a[i][j] + b[i][j]) mod 1000000;

===

We are assuming here that all elements with at least one zero coordinate are initialized to 0.

79

Problem B: Rook

Complexity:

For this solution, there are a couple of variations regarding time and space complexity:
a) We can put info about occupied squares into a matrix (for example w), and use a, b, w as matrices. In that case both

time and space complexity is 𝑂𝑂(𝑛𝑛2).
b) We could also put info about occupied squares into a separate array of length m and sort it in order in which the

squares are being visited. Also, instead of matrices 𝑎𝑎, 𝑏𝑏,𝑤𝑤, it is enough to use the last two rows of each of them. That
gives us time complexity 𝑂𝑂(𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚 + 𝑛𝑛2), and space complexity 𝑂𝑂(𝑚𝑚 + 𝑛𝑛).

Test data:

Test cases should include:
• An example where it is not possible to move by the rules and reach the square (𝑛𝑛,𝑛𝑛);
• A big example with a large table and lots of occupied squares (up to the limit).

80

Problem B: Rook

Complexity:

For this solution, there are a couple of variations regarding time and space complexity:
a) We can put info about occupied squares into a matrix (for example w), and use a, b, w as matrices. In that case both

time and space complexity is 𝑂𝑂(𝑛𝑛2).
b) We could also put info about occupied squares into a separate array of length m and sort it in order in which the

squares are being visited. Also, instead of matrices 𝑎𝑎, 𝑏𝑏,𝑤𝑤, it is enough to use the last two rows of each of them. That
gives us time complexity 𝑂𝑂(𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚 + 𝑛𝑛2), and space complexity 𝑂𝑂(𝑚𝑚 + 𝑛𝑛).

Test data:

Test cases should include:
• An example where it is not possible to move by the rules and reach the square (𝑛𝑛,𝑛𝑛);
• A big example with a large table and lots of occupied squares (up to the limit).

Problem C: Tree game

Problem C: Tree game
Statement:
You are playing a simple game. You are given an undirected connected graph which does not have cycles. There is also
one coin with is in the beginning located at vertex 𝑥𝑥. One step consists of moving the coin from the vertex at which it is
currently located to any adjacent vertex (two vertexes are adjacent if there is an edge connecting them). Every edge has an
associated number of points you gain if you move the coin from one of its vertexes to another. Your task is to calculate
the maximal number of points you can gain in 𝑘𝑘 steps. You can move the coin along some edges more than once.

Input:
The first line contains number n, which is the number of vertexes of the tree (number of vertexes 𝑛𝑛). The following 𝑛𝑛 − 1
lines contain information for 𝑛𝑛 − 1 edges of the tree. Each of the following 𝑛𝑛 − 1 lines has three numbers (𝑖𝑖-th of these
lines describes 𝑖𝑖-th edge) – the first two numbers are vertexes connected by the edge and the third number is the number
of points that you gain if you move the coin along that edge. The number of points associated with an edge is less or
equal to 1,000. The vertexes are labeled with numbers from 1 to 𝑛𝑛.
The next line contains the number 𝑘𝑘.
The last line contains the vertex 𝑥𝑥, vertex at which the coin is located in the beginning.

Constraints:
• 2 ≤ n ≤ 100,000
• 1 ≤ k ≤ 100,000
• The number of points associated with an edge is less or equal to 1,000

Output:
You should output one number which is the maximal number of points you can gain in 𝑘𝑘 steps with the coin located in
the beginning at vertex 𝑥𝑥.

Example input: Example output:
6
1 2 3
4 3 5
4 1 2
3 6 6
5 1 9
3
4

20

> Time and memory limit: 1s / 64MB

81

Problem C: Tree game

Solution and analysis:
This is a graph problem. On first sight, it looks like this problem requires the standard dynamic programming approach for
trees - bottom-up from leaves to the root. But if we play a little bit with this problem, we will see that the greedy approach
will find an optimal path.
Assume that we use following edges in 𝑘𝑘 steps path: 𝑝𝑝 = 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑘𝑘. Edges can be used more than once so 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑗𝑗 can be
the same edge for some 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑘𝑘. If there is an edge 𝑒𝑒𝑚𝑚 (1 ≤ 𝑚𝑚 < 𝑘𝑘) that has more points than every edge in the path 𝑝𝑝
used after 𝑒𝑒𝑚𝑚, then the path p can’t be optimal. Namely, in that case we can use the first part 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 − 1 of the path 𝑝𝑝
and after that we just use edge 𝑒𝑒𝑚𝑚 for the remaining 𝑛𝑛 − 𝑖𝑖 + 1 steps. This way we will get more points than in the original
path.
Because of this, in the optimal path the edge with the maximal number of points among the edges that constitute the
optimal path must be the edge which was used last (or in a last couple of steps) in the optimal path. This is the main idea for
the algorithm.
Let’s say that in the optimal path the edge 𝑒𝑒 is used last in a couple of steps. We can see that the number of edges we used
prior to using edge 𝑒𝑒 should be as small as possible; otherwise the path would not be optimal because we can make a path
which uses less edges prior to using edge 𝑒𝑒, and this path will then get us more points.

Figure 1. Optimal path

The solution consists of the following: for every edge of the tree we try to go to that edge using the minimal possible number
of edges and then use that edge for every available step left and we choose among those paths the path with the maximal
number of points. Of course, we try this for every edge to which the minimal number of edges used is less than the available
number of steps. Because this is a tree, we can accomplish all this with one traversal using some standard graph traversal
algorithms – DFS or BFS.

Time and memory complexity of this solution are both 𝑂𝑂(𝑛𝑛).

82

Problem C: Tree game

Solution and analysis:
This is a graph problem. On first sight, it looks like this problem requires the standard dynamic programming approach for
trees - bottom-up from leaves to the root. But if we play a little bit with this problem, we will see that the greedy approach
will find an optimal path.
Assume that we use following edges in 𝑘𝑘 steps path: 𝑝𝑝 = 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑘𝑘. Edges can be used more than once so 𝑒𝑒𝑖𝑖 and 𝑒𝑒𝑗𝑗 can be
the same edge for some 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑘𝑘. If there is an edge 𝑒𝑒𝑚𝑚 (1 ≤ 𝑚𝑚 < 𝑘𝑘) that has more points than every edge in the path 𝑝𝑝
used after 𝑒𝑒𝑚𝑚, then the path p can’t be optimal. Namely, in that case we can use the first part 𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑚𝑚 − 1 of the path 𝑝𝑝
and after that we just use edge 𝑒𝑒𝑚𝑚 for the remaining 𝑛𝑛 − 𝑖𝑖 + 1 steps. This way we will get more points than in the original
path.
Because of this, in the optimal path the edge with the maximal number of points among the edges that constitute the
optimal path must be the edge which was used last (or in a last couple of steps) in the optimal path. This is the main idea for
the algorithm.
Let’s say that in the optimal path the edge 𝑒𝑒 is used last in a couple of steps. We can see that the number of edges we used
prior to using edge 𝑒𝑒 should be as small as possible; otherwise the path would not be optimal because we can make a path
which uses less edges prior to using edge 𝑒𝑒, and this path will then get us more points.

Figure 1. Optimal path

The solution consists of the following: for every edge of the tree we try to go to that edge using the minimal possible number
of edges and then use that edge for every available step left and we choose among those paths the path with the maximal
number of points. Of course, we try this for every edge to which the minimal number of edges used is less than the available
number of steps. Because this is a tree, we can accomplish all this with one traversal using some standard graph traversal
algorithms – DFS or BFS.

Time and memory complexity of this solution are both 𝑂𝑂(𝑛𝑛).

Problem D: Transformations

Problem D: Transformations
Statement:
You are given 𝑛𝑛 different transformations of integers 1, 2, … ,𝑛𝑛, one for each of these n numbers. Using the first
transformation you can transform number 1 to some group of numbers, using the second transformation you can
transform number 2 to some other group of numbers etc. Numbers that can be derived using given transformations are
also integers between 1 and 𝑛𝑛.

If you have a group of elements, which are numbers from 1 through 𝑛𝑛 (there can be multiple instances of the same
number in the group), in one step can you can transform any element of the group to new elements that are produced
using the transformation of the selected element. You start with a group which has only one element, which is a number
between 1 and 𝑛𝑛, and you can choose which number is the starting element of the group. Your goal is to have after 𝑠𝑠
steps a group with as much elements as possible.

Input:
The first line contains one positive integer 𝑛𝑛.

The following 𝑛𝑛 lines contain information for transformations of numbers from 1 to 𝑛𝑛. Each of the following 𝑛𝑛 lines
consists of the following integers (𝑖𝑖-th of these lines describes transformation of number 𝑖𝑖) – the first number, denote it
with 𝑒𝑒𝑖𝑖 is the number of elements to which number 𝑖𝑖 is transformed and the following 𝑒𝑒𝑖𝑖 numbers are the numbers to
which number 𝑖𝑖 is transformed.

The last line contains number 𝑠𝑠 which is number of available steps.

Output:
You should output one number which is the maximal number of elements your group can possibly have after 𝑠𝑠 steps.

Constraints:
• 1 ≤ n ≤ 1,000
• 1 ≤ s ≤ 50
• 1 ≤ ei ≤ 30

83

Problem D: Transformations

Example input: Example output:
4
3 1 1 4
5 4 4 1 3 1
1 4
2 2 1
3

10

Explanation:
There are 4 numbers. The transformations are:

1 → 1 1 4
2 → 4 4 1 3 1
3 → 4
4 → 2 1

The optimal solution is choosing the initial element of the group to be 2, then after transforming it the group will have
elements 1 1 3 4 4, after that one instance of number 4 is transformed and the group will have elements 1 1 1 2 3 4. Finally,
the number 2 is transformed and the group has 10 elements after 3 steps.

> Time and memory limit: 1s / 64MB

84

Problem D: Transformations

Example input: Example output:
4
3 1 1 4
5 4 4 1 3 1
1 4
2 2 1
3

10

Explanation:
There are 4 numbers. The transformations are:

1 → 1 1 4
2 → 4 4 1 3 1
3 → 4
4 → 2 1

The optimal solution is choosing the initial element of the group to be 2, then after transforming it the group will have
elements 1 1 3 4 4, after that one instance of number 4 is transformed and the group will have elements 1 1 1 2 3 4. Finally,
the number 2 is transformed and the group has 10 elements after 3 steps.

> Time and memory limit: 1s / 64MB

Problem D: Transformations

Solution and analysis:
We can solve the task using dynamic programming. This is a very nice problem, because we have some kind of two-step
dynamic programming where these steps communicate with each other.

Firstly, let us introduce labels that we are going to use:

• 𝑘𝑘 → (𝑡𝑡[𝑘𝑘][1], 𝑡𝑡[𝑘𝑘][2], … , 𝑡𝑡[𝑘𝑘][𝑛𝑛𝑛𝑛𝑛𝑛[𝑘𝑘]]) ≡ 𝑇𝑇[𝑘𝑘], 𝑘𝑘 ∈ [1,𝑛𝑛], for the transformations. Number 𝑘𝑘 can be transformed in
the above group, where 𝑒𝑒[𝑘𝑘] represents cardinality of this list.

• 𝐹𝐹(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, (𝑎𝑎1,𝑎𝑎2, …𝑎𝑎𝑚𝑚)) – maximal number of elements that can be obtained starting from the group
(𝑎𝑎1,𝑎𝑎2, …𝑎𝑎𝑚𝑚) and performing 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 transformations in some order.

• 𝑠𝑠 - number of steps (transformations)
•

The final solution can be computed as:

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝐹𝐹(𝑠𝑠, (1)),𝐹𝐹(𝑠𝑠, (2)), … ,𝐹𝐹(𝑠𝑠, (𝑛𝑛))}

The main observation for this problem is following: when we perform transformation 𝑎𝑎𝑘𝑘 → 𝑇𝑇[𝑎𝑎𝑘𝑘] on the group
(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚) we obtain a new group

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = (𝑎𝑎1,𝑎𝑎2, . . ,𝑎𝑎𝑘𝑘−1,𝑎𝑎𝑘𝑘+1, … ,𝑎𝑎𝑚𝑚) + (𝑡𝑡[𝑘𝑘][1], 𝑡𝑡[𝑘𝑘][2], … , 𝑡𝑡[𝑘𝑘][𝑒𝑒[𝑘𝑘]𝑛𝑛𝑛𝑛𝑛𝑛[𝑘𝑘]]) = 𝐴𝐴 + 𝑇𝑇[𝑘𝑘]

Pay attention that the plus sign in the above formula is not a union. From here, we can look at these two groups
independently. The only question is to find how many transformations to “give” to each group - partition of the number of
steps. Without loss of generality, we can calculate the value 𝐹𝐹(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, (𝑎𝑎1,𝑎𝑎2, …𝑎𝑎𝑚𝑚)) by checking all possible number of
steps for transformation 𝑎𝑎𝑚𝑚 → 𝑇𝑇[𝑎𝑎𝑚𝑚].

Formally:

𝐹𝐹(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, (𝑎𝑎1,𝑎𝑎2, …𝑎𝑎𝑚𝑚)) = max
𝑘𝑘∈[0,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]

𝐹𝐹(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑘𝑘, (𝑎𝑎1, . . ,𝑎𝑎𝑚𝑚−1) + 𝐹𝐹(𝑘𝑘,𝑎𝑎𝑚𝑚)}

We can think of these transformations and groups as some kind of tree of deep 𝑠𝑠. Basically, we start from any group with one
element – which is going to represent a root of this tree. We want to find a leaf which holds the set with maximal cardinality.

85

Problem D: Transformations

Figure 1. Example of the tree mentioned in the problem analyses from example in the problem statement
with changed condition 𝑠𝑠 = 3

Implementation:

This can be implemented in many ways. We will describe one of them. First let us define matrix 𝑑𝑑 as:
• 𝑑𝑑[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑥𝑥] = maximal number of elements that can be obtained starting
• from only one element 𝑥𝑥 in 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 steps

When we are computing some particular element 𝑑𝑑[𝑘𝑘, 𝑥𝑥], we are going to use:
• 𝑞𝑞[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑣𝑣] = maximal number of elements that can be obtained starting from the group (𝑡𝑡[𝑥𝑥][1], … , 𝑡𝑡[𝑥𝑥][𝑣𝑣]) in

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 steps
From here we have that 𝑑𝑑[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑥𝑥] = 𝑞𝑞[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1, 𝑒𝑒[𝑥𝑥]] (here we have −1 because we used one transformation 𝑥𝑥 →
𝑇𝑇[𝑥𝑥]). We can play with elements of the matrix 𝑞𝑞 with following relation:

𝑞𝑞[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 1] = 𝑒𝑒[𝑥𝑥]
𝑞𝑞[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑣𝑣] = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘∈[0,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]
{𝑞𝑞[𝑘𝑘, 𝑣𝑣 − 1] + 𝑑𝑑[𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑘𝑘, 𝑡𝑡[𝑥𝑥][𝑣𝑣]]}, for 𝑣𝑣 ∈ [2, 𝑒𝑒[𝑥𝑥]]

The complexity of this solution is 𝑂𝑂(𝑛𝑛 ⋅ 𝑠𝑠2 ⋅ 𝑚𝑚), where 𝑚𝑚 represents maximal group cardinality in the given transformations.

86

Problem D: Transformations

Figure 1. Example of the tree mentioned in the problem analyses from example in the problem statement
with changed condition 𝑠𝑠 = 3

Implementation:

This can be implemented in many ways. We will describe one of them. First let us define matrix 𝑑𝑑 as:
• 𝑑𝑑[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑥𝑥] = maximal number of elements that can be obtained starting
• from only one element 𝑥𝑥 in 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 steps

When we are computing some particular element 𝑑𝑑[𝑘𝑘, 𝑥𝑥], we are going to use:
• 𝑞𝑞[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑣𝑣] = maximal number of elements that can be obtained starting from the group (𝑡𝑡[𝑥𝑥][1], … , 𝑡𝑡[𝑥𝑥][𝑣𝑣]) in

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 steps
From here we have that 𝑑𝑑[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑥𝑥] = 𝑞𝑞[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1, 𝑒𝑒[𝑥𝑥]] (here we have −1 because we used one transformation 𝑥𝑥 →
𝑇𝑇[𝑥𝑥]). We can play with elements of the matrix 𝑞𝑞 with following relation:

𝑞𝑞[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 1] = 𝑒𝑒[𝑥𝑥]
𝑞𝑞[𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑣𝑣] = 𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘∈[0,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛]
{𝑞𝑞[𝑘𝑘, 𝑣𝑣 − 1] + 𝑑𝑑[𝑛𝑛𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 − 𝑘𝑘, 𝑡𝑡[𝑥𝑥][𝑣𝑣]]}, for 𝑣𝑣 ∈ [2, 𝑒𝑒[𝑥𝑥]]

The complexity of this solution is 𝑂𝑂(𝑛𝑛 ⋅ 𝑠𝑠2 ⋅ 𝑚𝑚), where 𝑚𝑚 represents maximal group cardinality in the given transformations.

Problem E: LIS

Problem E: LIS
Statement:
You are given an integer sequence 𝑎𝑎 of length 𝑛𝑛 and an integer 𝑤𝑤, 1 ≤ 𝑤𝑤 ≤ 𝑛𝑛. Let us denote with 𝐿𝐿𝑘𝑘 the length of the
longest increasing subsequence (LLIS) for subarray: 𝑎𝑎𝑘𝑘,𝑎𝑎𝑘𝑘+1, … ,𝑎𝑎𝑘𝑘+𝑤𝑤−1. You have to write a program that computes values
𝐿𝐿𝑘𝑘 for every 𝑘𝑘, 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 𝑤𝑤 + 1.
Assume that the sum of values 𝐿𝐿𝑘𝑘 does not exceed 3 ⋅ 𝑛𝑛 √𝑛𝑛.
The longest increasing subsequence of a given sequence 𝑎𝑎 is the subsequence of strictly increasing elements containing
the largest number of elements. Elements of the subsequence do not need to be consecutive.

Input:
The first line contains two positive integers 𝑛𝑛 and 𝑤𝑤 and, where 𝑛𝑛 is the number of elements in the given array and 𝑤𝑤 is
the width of subarray that have to be examined. Next line contains 𝑛𝑛 integers, separated with one space, which represents
the elements of array 𝑎𝑎. The elements are in range [0, 2 ⋅ 109].

Output:
The output contains 𝑛𝑛 − 𝑤𝑤 + 1 numbers, one per line. The number in the 𝑘𝑘-th line is the length of the longest increasing
subsequence for 𝑎𝑎𝑘𝑘,𝑎𝑎𝑘𝑘+1, … ,𝑎𝑎𝑘𝑘+𝑤𝑤−1.

Constraints:
• 1 ≤ n ≤ 100,000
• 1 ≤ w ≤ n
• 0 ≤ a[i] ≤ 2⋅10 9

Example input: Example output:
6 4
1 4 2 5 6 7

3
3
4

Explanation:
For this example, we have three subsequences of width 4 in given array 𝑎𝑎:

• (1, 4, 2, 5), where LLIS is equal to 3; one possible LIS is (1, 2, 5)
• (4, 2, 5, 6), where LLIS is equal to 3; one possible LIS is (4, 5, 6)
• (2, 5, 6, 7), where LLIS is equal to 4; LIS is the whole subsequence

> Time and memory limit: 2s / 64MB

87

Problem E: LIS

Solution and analysis:
This problem considers finding the length of the longest increasing subsequence in a sliding window (of width 𝑤𝑤), over a
given sequence 𝑎𝑎. In the problem statement it is noted that the sum of lengths does not exceed 𝑛𝑛√𝑛𝑛. This is a very interesting
fact and it might be confusing. Here we are going to present an output-sensitive data structure that solves this problem with
time complexity 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) or in our case 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 + 𝑛𝑛√𝑛𝑛).

Within this framework, several related questions can be posed regarding this problem, each with potentially different time
complexity.

• Local Max Value - For each window report the length of the longest increasing subsequence in that window;
• Local Max Sequence - Explicitly list a longest increasing subsequence for each window;
• Global Max Sequence - Find the window with the longest increasing subsequence among all windows;

Here we deal with the Local Max Value. This algorithm solves the other two versions of the problem described above. Its
optimality in our case is an open question and left for contestants to improve it ☺
A naïve approach is to consider finding LIS for every window separately. The standard dynamic programming algorithm for
finding LIS has time complexity of 𝑂𝑂(𝑛𝑛2), which will lead to complexity of 𝑂𝑂(𝑛𝑛 ⋅ 𝑤𝑤2) for our problem. This approach can be
sped up with algorithms which date back to Robinson [1] and Schensted [2] with a generalization due to Knuth [3]. These
algorithms have time complexity 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛), which is optimal in the comparison model. Hunt and Szmanski [4] gave an
algorithm with time complexity 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) using the van Emde Boas data structure [5]. In any case, this naïve approach
has time complexity 𝑂𝑂(𝑛𝑛 ⋅ 𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤) in the best case.
Without loss of generality we can assume that a given array 𝑎𝑎 is a permutation of the set {1, 2, … ,𝑛𝑛} (if not we can simply
sort the array and rename the numbers in it with corresponding index). As we have seen in the previous paragraph, we have
to find some way to use the LIS (or some other information) from the previous window when examining the current one. For
this purpose, we will use Young tableaux or the Robinson–Schensted–Knuth algorithm. We will not explain these algorithms
in detail, because only a part of them will be needed here.
Above we have stated that the length of LIS for a given array can be found in 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) time. How can we do this? Let us
introduce a new list 𝑑𝑑. Initially this list will be empty. We will insert elements from array 𝑎𝑎 one at a time into the list 𝑑𝑑. When
inserting number 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 into 𝑑𝑑 we have two cases:

1. 𝑣𝑣𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 is greater than all elements from the list 𝑑𝑑 - In this case we add 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 to the end of list
2. 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is not greater than all elements from the list 𝑑𝑑 - In this case there exists an element that is greater than 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.

Let us denote with 𝑡𝑡 the first one from the left. Remove the element 𝑡𝑡 from the list 𝑑𝑑 and put 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 in its place.

With this algorithm list 𝑑𝑑 will be monotonically increasing. It can be shown (how?) that the length of list 𝑑𝑑 is the length of the
longest increasing subsequence. It should be noted that list 𝑑𝑑 is not a LIS for array 𝑎𝑎, because it may not be a subsequence
(see example on Figure 1). The main idea behind this method is that the element 𝑑𝑑[𝑘𝑘] is the smallest element from array 𝑎𝑎
for which there exists an increasing subsequence in 𝑎𝑎 of length 𝑘𝑘 ending with that element. We will call 𝑑𝑑 the principal row
of array 𝑎𝑎 and denote it with 𝑅𝑅(𝑎𝑎).

88

Problem E: LIS

Solution and analysis:
This problem considers finding the length of the longest increasing subsequence in a sliding window (of width 𝑤𝑤), over a
given sequence 𝑎𝑎. In the problem statement it is noted that the sum of lengths does not exceed 𝑛𝑛√𝑛𝑛. This is a very interesting
fact and it might be confusing. Here we are going to present an output-sensitive data structure that solves this problem with
time complexity 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) or in our case 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛 + 𝑛𝑛√𝑛𝑛).

Within this framework, several related questions can be posed regarding this problem, each with potentially different time
complexity.

• Local Max Value - For each window report the length of the longest increasing subsequence in that window;
• Local Max Sequence - Explicitly list a longest increasing subsequence for each window;
• Global Max Sequence - Find the window with the longest increasing subsequence among all windows;

Here we deal with the Local Max Value. This algorithm solves the other two versions of the problem described above. Its
optimality in our case is an open question and left for contestants to improve it ☺
A naïve approach is to consider finding LIS for every window separately. The standard dynamic programming algorithm for
finding LIS has time complexity of 𝑂𝑂(𝑛𝑛2), which will lead to complexity of 𝑂𝑂(𝑛𝑛 ⋅ 𝑤𝑤2) for our problem. This approach can be
sped up with algorithms which date back to Robinson [1] and Schensted [2] with a generalization due to Knuth [3]. These
algorithms have time complexity 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛), which is optimal in the comparison model. Hunt and Szmanski [4] gave an
algorithm with time complexity 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) using the van Emde Boas data structure [5]. In any case, this naïve approach
has time complexity 𝑂𝑂(𝑛𝑛 ⋅ 𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤) in the best case.
Without loss of generality we can assume that a given array 𝑎𝑎 is a permutation of the set {1, 2, … ,𝑛𝑛} (if not we can simply
sort the array and rename the numbers in it with corresponding index). As we have seen in the previous paragraph, we have
to find some way to use the LIS (or some other information) from the previous window when examining the current one. For
this purpose, we will use Young tableaux or the Robinson–Schensted–Knuth algorithm. We will not explain these algorithms
in detail, because only a part of them will be needed here.
Above we have stated that the length of LIS for a given array can be found in 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) time. How can we do this? Let us
introduce a new list 𝑑𝑑. Initially this list will be empty. We will insert elements from array 𝑎𝑎 one at a time into the list 𝑑𝑑. When
inserting number 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 into 𝑑𝑑 we have two cases:

1. 𝑣𝑣𝑎𝑎𝑙𝑙𝑙𝑙𝑙𝑙 is greater than all elements from the list 𝑑𝑑 - In this case we add 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 to the end of list
2. 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is not greater than all elements from the list 𝑑𝑑 - In this case there exists an element that is greater than 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣.

Let us denote with 𝑡𝑡 the first one from the left. Remove the element 𝑡𝑡 from the list 𝑑𝑑 and put 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 in its place.

With this algorithm list 𝑑𝑑 will be monotonically increasing. It can be shown (how?) that the length of list 𝑑𝑑 is the length of the
longest increasing subsequence. It should be noted that list 𝑑𝑑 is not a LIS for array 𝑎𝑎, because it may not be a subsequence
(see example on Figure 1). The main idea behind this method is that the element 𝑑𝑑[𝑘𝑘] is the smallest element from array 𝑎𝑎
for which there exists an increasing subsequence in 𝑎𝑎 of length 𝑘𝑘 ending with that element. We will call 𝑑𝑑 the principal row
of array 𝑎𝑎 and denote it with 𝑅𝑅(𝑎𝑎).

Problem E: LIS

Figure 1. Example of algorithm for finding the LIS in array {3,10,6,1,5,7,8,2,4,9}.

In order to deal with the problem, we will consider a slightly more general question. We want to define some kind of
structure that will maintain information about the LIS of a sequence in such a way that it supports the following operations:

• adding a new element at the end of a sequence
• removing the first element from a sequence
• querying the data structure for the LLIS

For this purpose, we are going to store the principal row for every suffix of the current sequence. If we denote with 𝑎𝑎𝑘𝑘 the
suffix 𝑎𝑎𝑘𝑘𝑎𝑎𝑘𝑘+1 …𝑎𝑎𝑛𝑛, our structure will maintain 𝑅𝑅(𝑎𝑎1),𝑅𝑅(𝑎𝑎2), … ,𝑅𝑅(𝑎𝑎𝑛𝑛) (note that in our case this sequence has length 𝑤𝑤). This
collection of principal rows is called a row tower.

Figure 2. Example of a row tower for the array (3,5,2,7,4,8,1) and how it is generated.

89

Problem E: LIS

Removing the first element from a sequence can be implemented easily – delete the first principal row 𝑅𝑅(𝑎𝑎1). The length of
the first principal row is the length of LIS. Adding a new element corresponds to inserting it in every row and adding a new
row containing only this element. A naïve implementation of this method will also lead to time complexity of 𝑂𝑂(𝑛𝑛 ⋅ 𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤).
If we want to speed this up, we must store this tower in some compressed way.
Something that we can notice in Figure 2 is that 𝑅𝑅(𝑎𝑎𝑘𝑘) is either the same as 𝑅𝑅(𝑎𝑎𝑘𝑘−1) or can be obtained from it by deleting a
single element. This can be proven by induction (how?). From this we can state a generalization:
Lemma Let sequence 𝐴𝐴 be a suffix of sequence 𝐵𝐵. Then 𝑅𝑅(𝐴𝐴) is a subsequence of 𝑅𝑅(𝐵𝐵) and

|𝑅𝑅(𝐵𝐵)| − |𝑅𝑅(𝐴𝐴)| ≤ |𝐵𝐵| − |𝐴𝐴|

Because of this nice property, we can store the whole row tower in the following way:
• 𝑅𝑅 = 𝑅𝑅(𝑎𝑎) = 𝑅𝑅(𝑎𝑎1) – the principal row of whole sequence
• Drop out sequence 𝑑𝑑 with the length |𝑅𝑅(𝐴𝐴)|. Element 𝑑𝑑[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] represents the suffix at which the element

𝑅𝑅(𝑎𝑎)[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] drops out of the principal row.

For our example of Figure 2 we have 𝑑𝑑 = (6,3,1,5). With these two sequences we can reconstruct the whole tower. The main
problem here is to see how we can efficiently update this representation of the row tower. The expire operation simply
subtracts one from each element of 𝑑𝑑 and deletes the element with expiry time 0 (if there is one) from 𝑅𝑅. The add operation
for an element 𝑏𝑏 requires that 𝑏𝑏 should bump an element out of each row of the row tower (unless it is appended to all of
them). Since the rows form an inclusion chain, if 𝑏𝑏 bumps a certain element 𝑠𝑠 out of a row, then it bumps the element 𝑠𝑠 out
of all further rows to which s belongs. In other words, the drop out time for 𝑠𝑠 changes to the index of the first row from which
it is bumped out by 𝑏𝑏.
Now consider the next row of the tower (if one exists) after 𝑠𝑠 has dropped out. In this row there may or may not be elements
larger than 𝑠𝑠. If there are such elements, then b bumps out the smallest one. If not, then 𝑏𝑏 is appended to the end of this and
all subsequent rows. We can find a sequence of indices 𝑖𝑖1 < 𝑖𝑖2 < ⋯ < 𝑖𝑖𝑘𝑘 for the sequence 𝑑𝑑 such that:

• 𝑖𝑖1 is the least index of an element in the principal row 𝑅𝑅 which is larger than 𝑏𝑏
• 𝑖𝑖𝑥𝑥+1 is the least index larger than 𝑖𝑖𝑥𝑥 for which 𝑑𝑑(𝑖𝑖𝑥𝑥+1) > 𝑑𝑑(𝑖𝑖𝑥𝑥) (the element is larger than the prior one and it is still

in the current principal row)?
Now we can simply update the drop out sequence 𝑑𝑑 according to:

• 𝑑𝑑(𝑖𝑖1) = 𝑤𝑤
• 𝑑𝑑(𝑖𝑖𝑥𝑥+1) = 𝑑𝑑(𝑖𝑖𝑥𝑥), for 𝑥𝑥 ∈ [1, 𝑘𝑘 − 1]

Implementation of this algorithm is pretty straightforward, and we will leave it to the reader.

Complexity:

In this way we managed to implement operations for adding and removing one element in linear time of the LLIS problem
(querying is still in constant time). In the problem statement we denoted the length of LIS in 𝑘𝑘-th window with 𝐿𝐿𝑘𝑘. From this
the overall time complexity of our algorithm is 𝑂𝑂(∑𝐿𝐿𝑘𝑘). The described algorithm computes the lengths of LIS in the sliding
window in total time of

𝑂𝑂(𝑛𝑛 log𝑛𝑛 + ∑𝐿𝐿𝑘𝑘) = 𝑂𝑂(𝑛𝑛 log𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑂𝑂(𝑛𝑛 log𝑛𝑛 + 𝑛𝑛√𝑛𝑛)

90

Problem E: LIS

Removing the first element from a sequence can be implemented easily – delete the first principal row 𝑅𝑅(𝑎𝑎1). The length of
the first principal row is the length of LIS. Adding a new element corresponds to inserting it in every row and adding a new
row containing only this element. A naïve implementation of this method will also lead to time complexity of 𝑂𝑂(𝑛𝑛 ⋅ 𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑤𝑤).
If we want to speed this up, we must store this tower in some compressed way.
Something that we can notice in Figure 2 is that 𝑅𝑅(𝑎𝑎𝑘𝑘) is either the same as 𝑅𝑅(𝑎𝑎𝑘𝑘−1) or can be obtained from it by deleting a
single element. This can be proven by induction (how?). From this we can state a generalization:
Lemma Let sequence 𝐴𝐴 be a suffix of sequence 𝐵𝐵. Then 𝑅𝑅(𝐴𝐴) is a subsequence of 𝑅𝑅(𝐵𝐵) and

|𝑅𝑅(𝐵𝐵)| − |𝑅𝑅(𝐴𝐴)| ≤ |𝐵𝐵| − |𝐴𝐴|

Because of this nice property, we can store the whole row tower in the following way:
• 𝑅𝑅 = 𝑅𝑅(𝑎𝑎) = 𝑅𝑅(𝑎𝑎1) – the principal row of whole sequence
• Drop out sequence 𝑑𝑑 with the length |𝑅𝑅(𝐴𝐴)|. Element 𝑑𝑑[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] represents the suffix at which the element

𝑅𝑅(𝑎𝑎)[𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖] drops out of the principal row.

For our example of Figure 2 we have 𝑑𝑑 = (6,3,1,5). With these two sequences we can reconstruct the whole tower. The main
problem here is to see how we can efficiently update this representation of the row tower. The expire operation simply
subtracts one from each element of 𝑑𝑑 and deletes the element with expiry time 0 (if there is one) from 𝑅𝑅. The add operation
for an element 𝑏𝑏 requires that 𝑏𝑏 should bump an element out of each row of the row tower (unless it is appended to all of
them). Since the rows form an inclusion chain, if 𝑏𝑏 bumps a certain element 𝑠𝑠 out of a row, then it bumps the element 𝑠𝑠 out
of all further rows to which s belongs. In other words, the drop out time for 𝑠𝑠 changes to the index of the first row from which
it is bumped out by 𝑏𝑏.
Now consider the next row of the tower (if one exists) after 𝑠𝑠 has dropped out. In this row there may or may not be elements
larger than 𝑠𝑠. If there are such elements, then b bumps out the smallest one. If not, then 𝑏𝑏 is appended to the end of this and
all subsequent rows. We can find a sequence of indices 𝑖𝑖1 < 𝑖𝑖2 < ⋯ < 𝑖𝑖𝑘𝑘 for the sequence 𝑑𝑑 such that:

• 𝑖𝑖1 is the least index of an element in the principal row 𝑅𝑅 which is larger than 𝑏𝑏
• 𝑖𝑖𝑥𝑥+1 is the least index larger than 𝑖𝑖𝑥𝑥 for which 𝑑𝑑(𝑖𝑖𝑥𝑥+1) > 𝑑𝑑(𝑖𝑖𝑥𝑥) (the element is larger than the prior one and it is still

in the current principal row)?
Now we can simply update the drop out sequence 𝑑𝑑 according to:

• 𝑑𝑑(𝑖𝑖1) = 𝑤𝑤
• 𝑑𝑑(𝑖𝑖𝑥𝑥+1) = 𝑑𝑑(𝑖𝑖𝑥𝑥), for 𝑥𝑥 ∈ [1, 𝑘𝑘 − 1]

Implementation of this algorithm is pretty straightforward, and we will leave it to the reader.

Complexity:

In this way we managed to implement operations for adding and removing one element in linear time of the LLIS problem
(querying is still in constant time). In the problem statement we denoted the length of LIS in 𝑘𝑘-th window with 𝐿𝐿𝑘𝑘. From this
the overall time complexity of our algorithm is 𝑂𝑂(∑𝐿𝐿𝑘𝑘). The described algorithm computes the lengths of LIS in the sliding
window in total time of

𝑂𝑂(𝑛𝑛 log𝑛𝑛 + ∑𝐿𝐿𝑘𝑘) = 𝑂𝑂(𝑛𝑛 log𝑛𝑛 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂) = 𝑂𝑂(𝑛𝑛 log𝑛𝑛 + 𝑛𝑛√𝑛𝑛)

Problem E: LIS

Test data:

The test corpus for this problem consists of 15 test cases.
Test cases were generated with a couple of algorithms which (except those for special cases) were based on random
sequences and following theorem [9]:
Theorem Let 𝜋𝜋𝑛𝑛 be an uniform random permutation of set the {1,2,3, … ,𝑛𝑛} and 𝐿𝐿𝑛𝑛 an integer-valued random
variable 𝐿𝐿𝑛𝑛 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝜋𝜋𝑛𝑛). As 𝑛𝑛 → ∞ we have

𝐸𝐸[𝐿𝐿𝑛𝑛] ≈ 2√𝑛𝑛 and 𝜎𝜎[𝐿𝐿𝑛𝑛] = 𝑜𝑜(√𝑛𝑛)

A short description of test cases is given in Table 1.

ID 𝒏𝒏 𝒘𝒘 min LLIS max LLIS solution sum Description
01 10 5 2 3 16 By hand
02 100 10 3 7 395 Random
03 1000 100 12 21 15.333 Random
04 1000 900 54 57 5.675 Random
05 10000 100 70 91 802.603 Increasing sequence
06 99000 1000 2 825 39.315.222 "Saw" sequence
07 100000 50000 427 446 21.829.042 "Saw" sequence
08 100000 90000 587 597 5.908.135 Random
09 100000 100 12 25 1.671.330 Random
10 100000 1 1 1 100.000 Special case - Random
11 1 1 1 1 1 By hand
12 99999 99999 618 618 618 Special case - Random
13 99888 65432 1 1 34.457 Decreasing sequence
14 99999 1000 23 61 4.159.326 Random, 𝑃𝑃𝑑𝑑 = 95%
15 99999 77777 3024 3101 67.945.385 Random, 𝑃𝑃𝑑𝑑 = 95%

Table 1. Description of the test data

References:
[1] G. de B. Robinson, On representations of the symmetric group, Am. J. Math. 60 (1938) 745–760.
[2] C. Schensted, Longest increasing and decreasing subsequences, Can. J. Math. 13 (1961) 179–191.
[3] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math. 34 (1970) 709–727.
[4] J. Hunt, T. Szymanski, A fast algorithm for computing longest common subsequences, Comm. ACM 20 (1977)
350–353.
[5] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an efficient priority queue, Math. Systems
Theory 10 (1976/77) 99–127.
[6] M. H. Albert at al., Longest increasing subsequences in sliding windows, Theor. Comp. Sci. 321 (2004) 405 – 414.
[7] D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison–Wesley, Reading, Mass,
1973.
[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT Press (2009)

91

Problem F: Padlock

Problem F: Padlock
Statement:
You are stuck in a room with 𝑛𝑛 doors. On every door there is a padlock with a 10-digit rolling lock combination. You can
roll any digit either up or down, where rolling up at digit 9 will make the digit 0, and rolling down at digit 0 will make the
digit 9. The padlock will be open when the combination is matched with the key for that padlock. The goal is to open all
doors with the minimal number of rolling operations.
Initially all padlocks are set to 0000000000. Doors can be opened in any order. Besides rolling digits there is one very cool
button on the padlocks. This button can turn the digits on padlock to the same combination as a different padlock that is
already open (you cannot jump to a combination of the padlock for some door that is not open yet). This transformation
does not count as a rolling operation.

Input:
The first line contains one positive integer 𝑛𝑛, where 𝑛𝑛 is the number of doors. The next 𝑛𝑛 lines contain 10-digit integers
(some of them can have leading zeros), which represent the keys for padlocks.

Output:
The output should contain only one integer – minimal number of rolling necessary to open all doors.

Constraints:
• 1 ≤ n ≤ 1,000

Example input: Example output:
2
0000000003
0000000001

3

92

Problem F: Padlock

Problem F: Padlock
Statement:
You are stuck in a room with 𝑛𝑛 doors. On every door there is a padlock with a 10-digit rolling lock combination. You can
roll any digit either up or down, where rolling up at digit 9 will make the digit 0, and rolling down at digit 0 will make the
digit 9. The padlock will be open when the combination is matched with the key for that padlock. The goal is to open all
doors with the minimal number of rolling operations.
Initially all padlocks are set to 0000000000. Doors can be opened in any order. Besides rolling digits there is one very cool
button on the padlocks. This button can turn the digits on padlock to the same combination as a different padlock that is
already open (you cannot jump to a combination of the padlock for some door that is not open yet). This transformation
does not count as a rolling operation.

Input:
The first line contains one positive integer 𝑛𝑛, where 𝑛𝑛 is the number of doors. The next 𝑛𝑛 lines contain 10-digit integers
(some of them can have leading zeros), which represent the keys for padlocks.

Output:
The output should contain only one integer – minimal number of rolling necessary to open all doors.

Constraints:
• 1 ≤ n ≤ 1,000

Example input: Example output:
2
0000000003
0000000001

3

Problem F: Padlock

Explanation:

> Time and memory limit: 1s / 64MB

93

Problem F: Padlock

Solution and analysis:
We will first give the algorithm description, and then prove its correctness. We can use a simple greedy strategy:

1. Find a lock that needs the least number of rollings, from the initial state, to open. Add that number to the overall
cost and put that lock into the set of open locks.

2. Repeat until all locks are open:
a. Among locks that are still closed, find the one that requires the least number of rollings to unlock,

considering we can set it to state of any of the locks already open using zero rollings, or we can roll the
numbers from the initial state.

b. Update the overall cost and put the minimal lock into set of open locks.

To show that this approach does indeed yield the minimal overall number of rollings, we can consider a graph whose vertices
are locks, and weight of each edge (𝑢𝑢, 𝑣𝑣)is equal to number of rollings needed to open lock 𝑣𝑣 once it is set to the combination
of lock 𝑢𝑢. We can extend this graph with a lock 𝑧𝑧, whose key is all zeros, so that weights of edges (𝑧𝑧, 𝑖𝑖) represent numbers of
rollings necessary to open lock 𝑖𝑖 from its initial state. We also notice that weights of edges (𝑢𝑢, 𝑣𝑣) and (𝑣𝑣,𝑢𝑢) must be equal,
thus we have a complete undirected graph.
When opening lock 𝑣𝑣, we can either set it to a key of a previously open lock 𝑢𝑢 and then roll the numbers to get the right key
or roll the numbers from the initial position to 𝑣𝑣’s key. So, unlocking 𝑣𝑣 increases the overall cost either by weight of edge
(𝑧𝑧, 𝑣𝑣)) or by weight of edge (𝑢𝑢, 𝑣𝑣). If we consider the subgraph with only these used edges, we see that it is actually a
spanning tree of the original graph. So, in order to find the least number of rollings necessary to open all locks, we need to
find a minimum spanning tree of our graph.
The proposed greedy approach is actually Prim’s algorithm for finding minimum spanning trees of graphs and is easily
implemented to run in 𝑂𝑂(𝑛𝑛2) time. We can also precalculate numbers of rollings between all pairs of locks, and store the
graph in matrix form, which requires additional 𝑂𝑂(𝑛𝑛2) time and memory.

94

Problem F: Padlock

Solution and analysis:
We will first give the algorithm description, and then prove its correctness. We can use a simple greedy strategy:

1. Find a lock that needs the least number of rollings, from the initial state, to open. Add that number to the overall
cost and put that lock into the set of open locks.

2. Repeat until all locks are open:
a. Among locks that are still closed, find the one that requires the least number of rollings to unlock,

considering we can set it to state of any of the locks already open using zero rollings, or we can roll the
numbers from the initial state.

b. Update the overall cost and put the minimal lock into set of open locks.

To show that this approach does indeed yield the minimal overall number of rollings, we can consider a graph whose vertices
are locks, and weight of each edge (𝑢𝑢, 𝑣𝑣)is equal to number of rollings needed to open lock 𝑣𝑣 once it is set to the combination
of lock 𝑢𝑢. We can extend this graph with a lock 𝑧𝑧, whose key is all zeros, so that weights of edges (𝑧𝑧, 𝑖𝑖) represent numbers of
rollings necessary to open lock 𝑖𝑖 from its initial state. We also notice that weights of edges (𝑢𝑢, 𝑣𝑣) and (𝑣𝑣,𝑢𝑢) must be equal,
thus we have a complete undirected graph.
When opening lock 𝑣𝑣, we can either set it to a key of a previously open lock 𝑢𝑢 and then roll the numbers to get the right key
or roll the numbers from the initial position to 𝑣𝑣’s key. So, unlocking 𝑣𝑣 increases the overall cost either by weight of edge
(𝑧𝑧, 𝑣𝑣)) or by weight of edge (𝑢𝑢, 𝑣𝑣). If we consider the subgraph with only these used edges, we see that it is actually a
spanning tree of the original graph. So, in order to find the least number of rollings necessary to open all locks, we need to
find a minimum spanning tree of our graph.
The proposed greedy approach is actually Prim’s algorithm for finding minimum spanning trees of graphs and is easily
implemented to run in 𝑂𝑂(𝑛𝑛2) time. We can also precalculate numbers of rollings between all pairs of locks, and store the
graph in matrix form, which requires additional 𝑂𝑂(𝑛𝑛2) time and memory.

Problem G: LR primes

Problem G: LR primes
Statement:
A number 𝑎𝑎 = 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛−1 … 𝑐𝑐2𝑐𝑐1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is called L prime if its every non-empty suffix is a prime number and all its digits are different
from zero. In other words, numbers 𝑐𝑐1̅, 𝑐𝑐2𝑐𝑐1̅̅ ̅̅ ̅, … , 𝑐𝑐𝑛𝑛−1 … 𝑐𝑐2𝑐𝑐1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ and 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛−1 … 𝑐𝑐2𝑐𝑐1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ must be primes. For example, the number 113
is L prime number.
A number 𝑎𝑎 = 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛−1 … 𝑐𝑐2𝑐𝑐1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is called R prime if its every non-empty prefix is a prime number. In other words, numbers
𝑐𝑐𝑛̅𝑛, 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛−1̅̅ ̅̅ ̅̅ ̅̅ ̅, … , 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛−1 … 𝑐𝑐2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛−1 … 𝑐𝑐2𝑐𝑐1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ must be primes. For example, number 311 is R prime.
You are given an integer segment [𝑎𝑎, 𝑏𝑏]. How many integers from this segment are L or R prime numbers (including
numbers 𝑎𝑎 and 𝑏𝑏)?

Input:
The first line contains two positive integers 𝑎𝑎 and 𝑏𝑏, which represent the given segment.

Output:
The output contains only one integer – the number of integers from given segment that are L or R primes.

Constraints:
• 1 ≤ a ≤ b ≤ 1018

Example input: Example output:
10 30 4

Explanation:
From the segment [10, 30] L primes are: 13, 17, 23; R primes are 23, 29. Number 23 is both L and R prime, so we are
going to count it only once.

> Time and memory limit: 0.5s / 64MB

95

Problem G: LR primes

Problem analysis:
L and R primes are also known as left-truncated and right-truncated primes. Codes of their sequences in the On-Line
Encyclopedia of Integer Sequences are A024785 and A024770. We found them interesting for a programming problem
because of two facts:

• they are finite
• they have some kind of recursive property

We need to find a method for generating consecutive right and left primes. Here we are going to explain the algorithm for
right primes. The same algorithm, with small modifications because of the special digit 0, can be used for the left primes.

As we mentioned, these numbers have some kind of recursive structure: every right prime number having at least two digits
is an extension of another right prime number (i.e. the least significant digit is added). This is the main fact on which we are
going to base our iterative algorithm.

Let 𝑄𝑄𝑅𝑅 be an empty queue, which will store the right primes. We start by inserting the one-digit right primes (just primes).
Then in every step we extract the first element 𝑠𝑠 from the queue and check if any of the numbers 10 ⋅ 𝑠𝑠 + 𝑘𝑘, 𝑘𝑘 ∈ [1,3,7,9] is
prime. We excluded the digits {0,2,4,5,6,8}, because if the last digit is from this set, the new number will not be prime. If this
number is also a right prime - put it at the end of the queue.

Figure 1. The queue states in the right prime construction process.

96

Problem G: LR primes

Problem analysis:
L and R primes are also known as left-truncated and right-truncated primes. Codes of their sequences in the On-Line
Encyclopedia of Integer Sequences are A024785 and A024770. We found them interesting for a programming problem
because of two facts:

• they are finite
• they have some kind of recursive property

We need to find a method for generating consecutive right and left primes. Here we are going to explain the algorithm for
right primes. The same algorithm, with small modifications because of the special digit 0, can be used for the left primes.

As we mentioned, these numbers have some kind of recursive structure: every right prime number having at least two digits
is an extension of another right prime number (i.e. the least significant digit is added). This is the main fact on which we are
going to base our iterative algorithm.

Let 𝑄𝑄𝑅𝑅 be an empty queue, which will store the right primes. We start by inserting the one-digit right primes (just primes).
Then in every step we extract the first element 𝑠𝑠 from the queue and check if any of the numbers 10 ⋅ 𝑠𝑠 + 𝑘𝑘, 𝑘𝑘 ∈ [1,3,7,9] is
prime. We excluded the digits {0,2,4,5,6,8}, because if the last digit is from this set, the new number will not be prime. If this
number is also a right prime - put it at the end of the queue.

Figure 1. The queue states in the right prime construction process.

Problem G: LR primes

Complexity and implementation:

An interesting feature that we need to address for this algorithm is its time complexity. The complexity is 𝑂𝑂(𝑘𝑘√𝑚𝑚), where 𝑘𝑘 is
the number of the right prime numbers and 𝑚𝑚 is the greatest among them (the same thing holds for the left primes). This
fact is left for contestants to find out. Namely, these are finite sequences and after running this algorithm it appears that the
algorithm terminates with an empty queue. There are only 83 right prime numbers and only 4260 left prime numbers.
The largest of them are 73.939.133 and 357.686.312.646.216.567.629.137, respectively.
Another interesting fact is that if zeros are permitted, the sequence of left primes is infinite.
Because of this fact, the described algorithm with a reasonable implementation works very fast. For this we must use some
other technique for the primality testing. In our case the Fermat test will do the work. Of course, some other algorithm, like
the Miller-Rabin test, would also work. Here we will briefly describe the Fermat test.
Firstly, recall Fermat’s little theorem: if 𝑝𝑝 is a prime number and 𝑎𝑎 is an integer relatively prime to 𝑝𝑝, then

𝑎𝑎𝑝𝑝−1 ≡𝑝𝑝 1

Experimentation shows that this typically fails when 𝑝𝑝 is composite. This is the fact which is going to be the core of our test.
Complexity of this algorithm is 𝑂𝑂(𝑘𝑘 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙2 𝑛𝑛), where 𝑘𝑘 is the number of times we test a random number 𝑎𝑎 with above
theorem.
===

Function: Fermat’s primality test

Input: n – a value to test for primality

Output: false if n is composite

 true if n is probably prime

repeat k times

 pick random integer a from set {2,3,…,n-1}

 d = gcd(a,n);

 if (d != 1)

 return false;

 tmp = a^(n-1) mod n;

 if (tmp != 1)

 return false;

return true;

===

Pseudo code for the second algorithm

Another option is to hardcode all left and right primes in the code. Such solution works in linear time. Here we have to pay
attention to the size of the file. If we hardcode this in a relatively smart way, we will get the source file of the size ~ 60KB,
and 64KB is the maximum allowed size for source files on the finals.

97

Problem H: Hashed strings

Problem H: Hashed strings
Statement:
You are an evil hacker and your current evil mission is to impersonate your target by sending messages that look like they
came from them but that are actually from you. You have worked out the entire operation except for one small detail:
every string that your target sends is followed by a 32-bit hash value, which is used for error checking. You know the
algorithm, and it goes like this:
The strings are composed of lowercase letters of the English alphabet, and every letter corresponds to a unique 16-bit
code. All 32 bits of the hash value are initialized to zero. The hash is then calculated by passing through every character of
the string in order and performing the following steps:
Do a binary left rotation of the entire hash value (by one place)
Take the code for the character and the least significant 16 bits of the hash and do a binary XOR of these two values
Write the result from the previous step to the least significant 16 bits of the hash
Unfortunately, to implement the algorithm you need to know the 16-bit codes for letters of the alphabet, and those codes
are secret. Not all is lost though! You have already intercepted many pairs of strings with their hash values. Now all you
have to do is find some way to use that information to crack the codes.

Input:
The first line contains one positive integer 𝑛𝑛, the number of strings. Each of the following 𝑛𝑛 lines contains one string
consisting exclusively of letters ‘a’-‘z’ and one integer in the range [0, 232 − 1]. Writing this integer in 32-bit binary gives
the hash value of the string.

Output:
The first line of output should be one of three words: “IMPOSSIBLE”, “UNIQUE” or “MULTIPLE” (without quotes), if there
are respectively no solutions, exactly one solution and more than one solution. If the first line is “IMPOSSIBLE” or
“MULTIPLE”, nothing else should be written to output. If the first line is “UNIQUE”, each following line of output should
contain exactly one letter and one number, separated by a space. Every number is in the range [0, 216 − 1], and when
written in 16-bit binary represents the code for the letter. There should be as many lines as there are different letters that
appear in input. The lines should be sorted alphabetically by letter.

Constraints:
• 1 ≤ n ≤ 400
• Each string is at most 100 characters long

Example input: Example output:
2
a 4
ab 12

UNIQUE
a 4
b 4

> Time and memory limit: 3s / 64MB

98

Problem H: Hashed strings

Problem H: Hashed strings
Statement:
You are an evil hacker and your current evil mission is to impersonate your target by sending messages that look like they
came from them but that are actually from you. You have worked out the entire operation except for one small detail:
every string that your target sends is followed by a 32-bit hash value, which is used for error checking. You know the
algorithm, and it goes like this:
The strings are composed of lowercase letters of the English alphabet, and every letter corresponds to a unique 16-bit
code. All 32 bits of the hash value are initialized to zero. The hash is then calculated by passing through every character of
the string in order and performing the following steps:
Do a binary left rotation of the entire hash value (by one place)
Take the code for the character and the least significant 16 bits of the hash and do a binary XOR of these two values
Write the result from the previous step to the least significant 16 bits of the hash
Unfortunately, to implement the algorithm you need to know the 16-bit codes for letters of the alphabet, and those codes
are secret. Not all is lost though! You have already intercepted many pairs of strings with their hash values. Now all you
have to do is find some way to use that information to crack the codes.

Input:
The first line contains one positive integer 𝑛𝑛, the number of strings. Each of the following 𝑛𝑛 lines contains one string
consisting exclusively of letters ‘a’-‘z’ and one integer in the range [0, 232 − 1]. Writing this integer in 32-bit binary gives
the hash value of the string.

Output:
The first line of output should be one of three words: “IMPOSSIBLE”, “UNIQUE” or “MULTIPLE” (without quotes), if there
are respectively no solutions, exactly one solution and more than one solution. If the first line is “IMPOSSIBLE” or
“MULTIPLE”, nothing else should be written to output. If the first line is “UNIQUE”, each following line of output should
contain exactly one letter and one number, separated by a space. Every number is in the range [0, 216 − 1], and when
written in 16-bit binary represents the code for the letter. There should be as many lines as there are different letters that
appear in input. The lines should be sorted alphabetically by letter.

Constraints:
• 1 ≤ n ≤ 400
• Each string is at most 100 characters long

Example input: Example output:
2
a 4
ab 12

UNIQUE
a 4
b 4

> Time and memory limit: 3s / 64MB

Problem H: Hashed strings

Solution and analysis:
This task is based on a problem that the author actually had to solve for his real-life job (it didn’t involve any hackers though
– that part is made up ☺), and we thought it was interesting enough to be used for competitive purposes.
We have 𝑛𝑛 strings. Let’s denote them with 𝑠𝑠𝑖𝑖 = 𝑐𝑐𝑖𝑖,𝑙𝑙𝑖𝑖−1𝑐𝑐𝑖𝑖,𝑘𝑘𝑖𝑖−2 … 𝑐𝑐𝑖𝑖,0 (𝑖𝑖 ∈ {0,1 …𝑛𝑛 − 1};𝑙𝑙𝑖𝑖 is the length of 𝑠𝑠𝑖𝑖). (We’ll use indexes
that increase right to left throughout the text, so don’t say you weren’t warned.) A 32-bit integer corresponds to each string:
ℎ𝑖𝑖 = 𝑏𝑏𝑖𝑖,31𝑏𝑏𝑖𝑖,30 … 𝑏𝑏𝑖𝑖,0 (𝑏𝑏𝑖𝑖,𝑗𝑗 ∈ {0,1}). And finally, each character 𝑐𝑐 corresponds to a code, which is the 16-bit integer 𝑥𝑥𝑐𝑐 =
𝑥𝑥𝑐𝑐,15𝑥𝑥𝑐𝑐,14 … 𝑥𝑥𝑐𝑐,0.
Let’s observe the rightmost (index 0) bit of the hash value ℎ𝑖𝑖 . How is it calculated? Obviously, the rightmost bit of the
rightmost character of string 𝑠𝑠𝑖𝑖 (which we have denoted with 𝑥𝑥𝑐𝑐𝑖𝑖,0,0) can change it in the last step. But before that, the bit
𝑥𝑥𝑐𝑐𝑖𝑖,17,15 was initially added on index 15 and then made half a circle to get to our bit 𝑏𝑏𝑖𝑖,0. And before that, bits 𝑥𝑥𝑐𝑐𝑖𝑖,18,14,
𝑥𝑥𝑐𝑐𝑖𝑖,19,13,… 𝑥𝑥𝑐𝑐𝑖𝑖,32,0 also ended up turning around and contributing to 𝑏𝑏𝑖𝑖,0. And another half-circle before that, bit 𝑥𝑥𝑐𝑐𝑖𝑖,49,15, and so
on. Obviously, this goes on until we run out of characters in 𝑠𝑠𝑖𝑖 . The formula is

𝑏𝑏𝑖𝑖,0 = ∑ 𝑥𝑥𝑐𝑐𝑖𝑖,𝑗𝑗,𝑘𝑘
32|(𝑗𝑗+𝑘𝑘)

0≤𝑗𝑗<𝑙𝑙𝑖𝑖,0≤𝑘𝑘<16

where the sum is an XOR sum (or, mathematically speaking, everything happens in ℤ2). Now let’s try to generalize this
observation. We have the 𝑞𝑞-th bit (from the right, zero-based – as above) of hash value ℎ𝑖𝑖. Which bits of the original codes
are important for this bit? The same line of thinking as in the previous paragraph leaves us with the formula

𝑏𝑏𝑖𝑖,𝑞𝑞 = ∑ 𝑥𝑥𝑐𝑐𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑗𝑗+𝑘𝑘≡𝑞𝑞(mod 32)

0≤𝑗𝑗<𝑙𝑙𝑖𝑖,0≤𝑘𝑘<16

This means that the problem reduces to a system of linear equations. We have one equation per every bit of every hash sum,
which is a total of 32𝑛𝑛. The number of variables is 16 times the number of letters that appear in the input.
Solving systems of linear equations is a well-known problem, and here it is made even easier by the fact that we are working
in ℤ2 so the only values are 0 and 1 and there are no problems with precision. For example, we can solve the system in time
𝑂𝑂(𝑢𝑢2 ∙ 𝑣𝑣), where 𝑢𝑢 is the number of variables and 𝑣𝑣 the number of equations, by the standard Gaussian method of
eliminating the variables one by one. Of course, this algorithm is able to determine whether the system has a solution,
whether it is unique and, if it is, to find it. After this, assembling the solution bit-by-bit into codes for every letter and sorting
them alphabetically should present no trouble at all.

Complexity:

It is easy to see that the most expensive part of our algorithm is solving the system of equations, so the time complexity will
be 𝑂𝑂(𝑢𝑢2 ∙ 𝑣𝑣) per above. We have 𝑢𝑢 = 32𝑛𝑛 and, since we have a finite alphabet of known size, we could say that 𝑣𝑣 is a
constant but that would be slightly disingenuous as this constant is quite large. If 𝑤𝑤 is the number of letters that appear in
the input, we have 𝑣𝑣 = 16𝑤𝑤, and finally our complexity is 𝑂𝑂(213 ∙ 𝑤𝑤2 ∙ 𝑛𝑛). It is interesting to note that time complexity is
independent from the length of the strings.
We need 𝑂𝑂(𝑢𝑢 ∙ 𝑣𝑣) = 𝑂𝑂(29 ∙ 𝑤𝑤 ∙ 𝑛𝑛) space to store the equations, which gives us the memory complexity of this solution.

99

Problem H: Hashed strings

Test data:

ID Description
01 Easy test (example from the problem statement)
02 1 string with 1 letter with valid hash value (result code for the letter is equal to the hash value)
03 1 string - 31 times one letter. Code invalid/valid (IMPOSSIBLE/UNIQUE) 04
05 1 string - 32 times one letter (each bit from the code influences each bit of the hash value, so all

bits of the hash value need to be equal) (IMPOSSIBLE/MULTIPLE) 06
07 1 string - 33 times one letter. Code valid (UNIQUE)\
08 1 string - 64 times one letter (hash value doesn't depend on the code of the letter/hash value is

always 0) (IMPOSSIBLE/MULTIPLE) 09
10 Invalid hash value (larger than it could be calculated with given string) (IMPOSSIBLE) 11
12 Contradiction (last bit of the code for a letter should be both 0 and 1)
13 Large test with a small number of letters
14 Less strings than the number of used letters but still UNIQUE solution
15 Large strings but not enough equations to calculate UNIQUE solution (MULTIPLE)
16 Large test. One bit changed so IMPOSSIBLE.
17 Large tests to calculate UNIQUE solution

 18
19

100

Problem H: Hashed strings

Test data:

ID Description
01 Easy test (example from the problem statement)
02 1 string with 1 letter with valid hash value (result code for the letter is equal to the hash value)
03 1 string - 31 times one letter. Code invalid/valid (IMPOSSIBLE/UNIQUE) 04
05 1 string - 32 times one letter (each bit from the code influences each bit of the hash value, so all

bits of the hash value need to be equal) (IMPOSSIBLE/MULTIPLE) 06
07 1 string - 33 times one letter. Code valid (UNIQUE)\
08 1 string - 64 times one letter (hash value doesn't depend on the code of the letter/hash value is

always 0) (IMPOSSIBLE/MULTIPLE) 09
10 Invalid hash value (larger than it could be calculated with given string) (IMPOSSIBLE) 11
12 Contradiction (last bit of the code for a letter should be both 0 and 1)
13 Large test with a small number of letters
14 Less strings than the number of used letters but still UNIQUE solution
15 Large strings but not enough equations to calculate UNIQUE solution (MULTIPLE)
16 Large test. One bit changed so IMPOSSIBLE.
17 Large tests to calculate UNIQUE solution

 18
19

Problem H: Hashed strings

bubble cup 5

Problem A: Good sets

Problem A: Good sets
Statement:
Let 𝐴𝐴 be the set {1, 2, …𝑛𝑛}, where 𝑛𝑛 is a given natural number. Set B is called good if it has the following properties:
𝐵𝐵 is a subset of 𝐴𝐴;
For every 𝑥𝑥, if 𝑥𝑥 belongs to 𝐵𝐵, then 2𝑥𝑥 doesn't belong to 𝐵𝐵;
No other set 𝐶𝐶 can have properties a) and b) and a greater number of elements than 𝐵𝐵;
For example, if 𝑛𝑛 = 12, then 𝐴𝐴 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, and the set {1, 3, 4, 5, 7, 9, 11,12} is good, while
{1, 4, 5, 6,7, 9, 11} is not good (note that set 𝐶𝐶 from the third property doesn't have to be a superset of 𝐵𝐵).
Given positive integer numbers 𝑛𝑛 and 𝑏𝑏 compute the following:
The number of elements in every good set;
With how many zeros the total number of good sets ends, if written in base 𝑏𝑏.

Input:
The first and only line of input contains two integers 𝑛𝑛 and 𝑏𝑏, separated with one empty space, representing cardinality of
the set 𝐴𝐴 and the given base 𝑏𝑏, respectively.

Output:
Output contains only one line with two integers, separated with one empty space: the number of elements in every good
set and number of zeros at the end of the total number of good sets in base 𝑏𝑏, respectively.

Constraints:
• 1 ≤ n ≤ 4⋅109
• 2 ≤ b ≤ 100
• Number 𝑏𝑏 is a prime number.

Example input: Example output:
12 3 8 1

Example explanation:
All good sets consist of 8 elements and there are 6 of them - 6(10) = 20(3).

> Time and memory limit: 0.5s / 64MB

102

Problem A: Good sets

Problem A: Good sets
Statement:
Let 𝐴𝐴 be the set {1, 2, …𝑛𝑛}, where 𝑛𝑛 is a given natural number. Set B is called good if it has the following properties:
𝐵𝐵 is a subset of 𝐴𝐴;
For every 𝑥𝑥, if 𝑥𝑥 belongs to 𝐵𝐵, then 2𝑥𝑥 doesn't belong to 𝐵𝐵;
No other set 𝐶𝐶 can have properties a) and b) and a greater number of elements than 𝐵𝐵;
For example, if 𝑛𝑛 = 12, then 𝐴𝐴 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, and the set {1, 3, 4, 5, 7, 9, 11,12} is good, while
{1, 4, 5, 6,7, 9, 11} is not good (note that set 𝐶𝐶 from the third property doesn't have to be a superset of 𝐵𝐵).
Given positive integer numbers 𝑛𝑛 and 𝑏𝑏 compute the following:
The number of elements in every good set;
With how many zeros the total number of good sets ends, if written in base 𝑏𝑏.

Input:
The first and only line of input contains two integers 𝑛𝑛 and 𝑏𝑏, separated with one empty space, representing cardinality of
the set 𝐴𝐴 and the given base 𝑏𝑏, respectively.

Output:
Output contains only one line with two integers, separated with one empty space: the number of elements in every good
set and number of zeros at the end of the total number of good sets in base 𝑏𝑏, respectively.

Constraints:
• 1 ≤ n ≤ 4⋅109
• 2 ≤ b ≤ 100
• Number 𝑏𝑏 is a prime number.

Example input: Example output:
12 3 8 1

Example explanation:
All good sets consist of 8 elements and there are 6 of them - 6(10) = 20(3).

> Time and memory limit: 0.5s / 64MB

Problem A: Good sets

Solution and analysis:
Divide set 𝐴𝐴 into chains such that each chain starts with an odd number from 𝐴𝐴 and contains repeatedly doubled values from
𝐴𝐴. For example, if 𝑛𝑛 = 12, set 𝐴𝐴 is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} and the chains are 1 − 2 − 4 − 8, 3 − 6 − 12, 5 − 10, 7, 9,
11. Here the first chain contains 4 elements, the second chain 3, the third 2, and there are three one-element chains. Now
elements are chosen from each chain independently.
Let us denote with 𝑑𝑑[𝑛𝑛] the maximal number of elements from a chain of length 𝑛𝑛 such that no two are consecutive. It is not
hard to see that if a chain has an odd number of elements, there is only one way to pick the maximal number of elements
from that chain (take every element with an odd index). So, for a chain with 2𝑘𝑘 − 1 elements, that maximal number is 𝑘𝑘. In
other words, we have that 𝑑𝑑[2𝑘𝑘 − 1] = 𝑘𝑘.
For chains with an even number of elements, say 2𝑘𝑘, maximal number of elements that can be taken is 𝑘𝑘. Can we apply
some sort of induction here? For 2𝑘𝑘 + 2 = 2(𝑘𝑘 + 1) elements we see that we must use exactly one element out of the last two
(because otherwise we would have to select 𝑘𝑘 + 1 elements from 2𝑘𝑘, which is not possible by induction). If we choose the last
one, then from the first 2𝑘𝑘 we must select 𝑘𝑘 of them and this can be done in 𝑑𝑑[2𝑘𝑘] ways. In the second case, if we do not
select the last one, then we would have to select 𝑘𝑘 + 1 elements from first 2𝑘𝑘 + 1. From prior discussion we have that there is
only one way to do this. Now we have:

𝑑𝑑[2𝑘𝑘 + 2] = 𝑑𝑑[2𝑘𝑘 + 1] + 𝑑𝑑[2𝑘𝑘] = 1 + 𝑑𝑑[2𝑘𝑘]

Finally, from induction we have that 𝑑𝑑[2𝑘𝑘] = 𝑘𝑘 + 1, because 𝑑𝑑[2] = 2.
It remains to count chains of each different length, add up maximal numbers of elements for each chain, and multiply ways
to choose such elements from each chain. Actually, instead of computing the exact number of ways to form a good set, it is
required only to compute how many times this number is divisible by a given prime number 𝑏𝑏.

103

Problem B: Wheel of Fortune

Problem B: Wheel of Fortune
Statement:
You are on a quiz show playing the game Wheel of Fortune. The wheel has 𝑁𝑁 fields of the same size, and each field
1, 2, … ,𝑁𝑁 is associated with a value: 𝐷𝐷[1],𝐷𝐷[2], … ,𝐷𝐷[𝑁𝑁]. Each time you spin the wheel you have equal probability of hitting
any of the 𝑁𝑁 fields. You will spin the wheel 𝐾𝐾 times. When you spin the wheel for the 𝑖𝑖-th time and it stops on field 𝑗𝑗, if it is
your first time hitting that field, 𝐷𝐷[𝑗𝑗] dollars is added to your prize and field 𝑗𝑗 gets marked. If the wheel stops at a marked
field, meaning you've hit that field in some of your previous spins (𝑖𝑖 − 1, 𝑖𝑖 − 2, … , 1), your score does not increase.
What is the expected value of the prize you'll take home?

Input:
The first line contains two integers, 𝑁𝑁 – number of fields on the wheel, and 𝐾𝐾 – number of times you get to spin the wheel.
The following 𝑁𝑁 lines contain one integer each, representing values of the fields – 𝐷𝐷[1],𝐷𝐷[2], … ,𝐷𝐷[𝑁𝑁].

Output:
Output contains exactly one real number – expected value of your overall prize, rounded to 5 decimal places.

Constraints:
• 1 ≤ N ≤ 104
• 1 ≤ K ≤ N
• 1 ≤ D[i] ≤104

Example input: Example output:
2 2
10
20

22.50

> Time and memory limit: 0.5s / 64MB

104

Problem B: Wheel of Fortune

Problem B: Wheel of Fortune
Statement:
You are on a quiz show playing the game Wheel of Fortune. The wheel has 𝑁𝑁 fields of the same size, and each field
1, 2, … ,𝑁𝑁 is associated with a value: 𝐷𝐷[1],𝐷𝐷[2], … ,𝐷𝐷[𝑁𝑁]. Each time you spin the wheel you have equal probability of hitting
any of the 𝑁𝑁 fields. You will spin the wheel 𝐾𝐾 times. When you spin the wheel for the 𝑖𝑖-th time and it stops on field 𝑗𝑗, if it is
your first time hitting that field, 𝐷𝐷[𝑗𝑗] dollars is added to your prize and field 𝑗𝑗 gets marked. If the wheel stops at a marked
field, meaning you've hit that field in some of your previous spins (𝑖𝑖 − 1, 𝑖𝑖 − 2, … , 1), your score does not increase.
What is the expected value of the prize you'll take home?

Input:
The first line contains two integers, 𝑁𝑁 – number of fields on the wheel, and 𝐾𝐾 – number of times you get to spin the wheel.
The following 𝑁𝑁 lines contain one integer each, representing values of the fields – 𝐷𝐷[1],𝐷𝐷[2], … ,𝐷𝐷[𝑁𝑁].

Output:
Output contains exactly one real number – expected value of your overall prize, rounded to 5 decimal places.

Constraints:
• 1 ≤ N ≤ 104
• 1 ≤ K ≤ N
• 1 ≤ D[i] ≤104

Example input: Example output:
2 2
10
20

22.50

> Time and memory limit: 0.5s / 64MB

Problem B: Wheel of Fortune

Solution and analysis:
In order to calculate the expected prize value, we can observe the expected value that we can gain from each field. By the
rules of the game, for each field 𝑗𝑗 we can get either 0 points if we never hit that field in our 𝐾𝐾
spins, or exactly 𝐷𝐷[𝑗𝑗] points if we hit 𝑗𝑗 at least once (i.e. we get the same score for field 𝑗𝑗 no matter how many times the
wheel stops at that field). Thus, the expected overall prize can be calculated as the expected sum of prizes each field will give
us, so we have:

𝐸𝐸[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] = 𝐸𝐸 [∑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑗𝑗
𝑁𝑁

𝑗𝑗=1
] = ∑𝐸𝐸[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑗𝑗]

𝑁𝑁

𝑗𝑗=1

Given that we have N fields of the same size, and we are making K random draws (i.e. wheel spins), it is obvious that for each
field of the wheel we have the same binomial distribution over the number of hits after K spins:

𝑃𝑃𝑘𝑘(𝐾𝐾,𝑝𝑝) = (𝐾𝐾𝑘𝑘)𝑝𝑝
𝑘𝑘(1 − 𝑝𝑝)𝐾𝐾−𝑘𝑘

Here 𝑃𝑃𝑘𝑘 stands for the probability of exactly 𝑘𝑘 hits after 𝐾𝐾 spins, and 𝑝𝑝 denotes probability of hitting the field in a single spin,
so 𝑝𝑝 = 1

𝑁𝑁.
Now we can write the distribution over prize value for each field:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑗𝑗 = (
0 𝐷𝐷[𝑗𝑗]

𝑃𝑃0(𝐾𝐾,𝑝𝑝) ∑𝑃𝑃𝑖𝑖(𝐾𝐾,𝑝𝑝)
𝐾𝐾

𝑖𝑖=1

)

In order to avoid dealing with binomial coefficients, we can rewrite the above distribution in simpler terms:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑗𝑗 = (0 𝐷𝐷[𝑗𝑗]
𝑃𝑃0(𝐾𝐾,𝑝𝑝) 1 − 𝑃𝑃0(𝐾𝐾,𝑝𝑝))

so, we end up with
:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑗𝑗 = (
0 𝐷𝐷[𝑗𝑗]

(1 − 1
𝑁𝑁)

𝐾𝐾
1 − (1 − 1

𝑁𝑁)
𝐾𝐾)

Finally, we can calculate the expected overall prize as:

𝐸𝐸[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃] = ∑𝐸𝐸[𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑗𝑗]
𝑁𝑁

𝑗𝑗=1
= ∑𝐷𝐷[𝑗𝑗] ∙

𝑁𝑁

𝑗𝑗=1
(1 − (1 − 1

𝑁𝑁)
𝐾𝐾
)

which yields an easy 𝑂𝑂(𝑁𝑁) solution.

105

Problem C: MaxDiff

Problem C: MaxDiff
Statement:
You are given an array of integers 𝐴𝐴 of length 𝑁𝑁. We will define 𝑆𝑆(𝐴𝐴) as the sum of absolute differences between all pairs
of consecutive elements in 𝐴𝐴. More formally, assuming that 𝐴𝐴 is zero-based:

𝑆𝑆(𝐴𝐴) = ∑|𝐴𝐴[𝑖𝑖] − 𝐴𝐴[𝑖𝑖 − 1]|
𝑁𝑁−1

𝑖𝑖=1
.

Your task is to find the permutation 𝑝𝑝(𝐴𝐴) of the array 𝐴𝐴 for which the value 𝑆𝑆(𝑝𝑝(𝐴𝐴)) is maximized.

Input:
The first line of input will contain one integer 𝑁𝑁, representing the size of the array 𝐴𝐴. The second line will contain 𝑁𝑁 space-
separated integers, representing the elements of the array.

Output:
The first and only line of output should contain a single integer equal to the largest sum of differences of consecutive
elements obtainable from 𝐴𝐴 as described in the problem statement.

Constraints:
• 1 ≤ N ≤ 1,000,000
• -232 ≤ A[i] ≤ 232-1

Example input: Example output:
3
2 3 5

5

Example explanation:
There are six possible ways to reorder the array: (2, 3, 5); (2, 5, 3); (3, 2, 5); (3, 5, 2); (5, 2, 3); (5, 3, 2). The sums of
differences are then respectively 3, 5, 4, 5, 4 and 3, and the largest among them is 5.

> Time and memory limit: 1.0s / 64MB

106

Problem C: MaxDiff

Problem C: MaxDiff
Statement:
You are given an array of integers 𝐴𝐴 of length 𝑁𝑁. We will define 𝑆𝑆(𝐴𝐴) as the sum of absolute differences between all pairs
of consecutive elements in 𝐴𝐴. More formally, assuming that 𝐴𝐴 is zero-based:

𝑆𝑆(𝐴𝐴) = ∑|𝐴𝐴[𝑖𝑖] − 𝐴𝐴[𝑖𝑖 − 1]|
𝑁𝑁−1

𝑖𝑖=1
.

Your task is to find the permutation 𝑝𝑝(𝐴𝐴) of the array 𝐴𝐴 for which the value 𝑆𝑆(𝑝𝑝(𝐴𝐴)) is maximized.

Input:
The first line of input will contain one integer 𝑁𝑁, representing the size of the array 𝐴𝐴. The second line will contain 𝑁𝑁 space-
separated integers, representing the elements of the array.

Output:
The first and only line of output should contain a single integer equal to the largest sum of differences of consecutive
elements obtainable from 𝐴𝐴 as described in the problem statement.

Constraints:
• 1 ≤ N ≤ 1,000,000
• -232 ≤ A[i] ≤ 232-1

Example input: Example output:
3
2 3 5

5

Example explanation:
There are six possible ways to reorder the array: (2, 3, 5); (2, 5, 3); (3, 2, 5); (3, 5, 2); (5, 2, 3); (5, 3, 2). The sums of
differences are then respectively 3, 5, 4, 5, 4 and 3, and the largest among them is 5.

> Time and memory limit: 1.0s / 64MB

Problem C: MaxDiff

Solution and analysis:
It is obviously infeasible to generate all permutations of 𝐴𝐴, calculate the value 𝑆𝑆 for each one and pick the maximum, so let’s
try to observe some things about the problem that will help us reduce the space of possible solutions.
We will assume that all elements in the array are distinct. The proofs for the case when equal elements are allowed are
slightly more difficult and there is a number of corner cases that have to be taken care of, so they will be left to the reader as
an exercise ☺
First, let’s notice a relatively obvious but very important fact: there will always exist an optimal solution in which the
elements are sorted in a “zig-zag” manner, i.e. it will not contain a triple of consecutive elements such that 𝐴𝐴[𝑖𝑖] < 𝐴𝐴[𝑖𝑖 + 1] <
𝐴𝐴[𝑖𝑖 + 2] (or 𝐴𝐴[𝑖𝑖] > 𝐴𝐴[𝑖𝑖 + 1] > 𝐴𝐴[𝑖𝑖 + 2]). Proving this is easy: if we have a triple satisfying this condition, we can just pull out
its middle element and place it at the end of the array – it is trivial to verify that 𝑆𝑆 cannot decrease after this transformation.
The other fact is slightly harder to notice. Let’s denote the median of 𝐴𝐴 with 𝑚𝑚. (A reminder: the median of an array is the
middle element of the sorted array if the number of elements is odd, and the average of the two middle elements if the
number of elements is even). Clearly 𝑚𝑚 depends only on the elements of 𝐴𝐴 and not on the permutation. We will prove the
following:
Lemma. There is an optimal solution in which there are no two consecutive elements that are either both larger or both
smaller than the median.
Proof. The first thing to notice here is that, due to the “zig-zag” principle discussed above, an optimal solution can’t contain a
sequence of exactly two consecutive elements on the same side of the median. Let’s assume that there are at least three such
consecutive elements. It is easy to see that we can always pick exactly three consecutive elements from this sequence such
that 𝐴𝐴[𝑖𝑖] > 𝐴𝐴[𝑖𝑖 + 1] < 𝐴𝐴[𝑖𝑖 + 2]. Since the rest of the array now has at least two more elements that are under the median
than elements that are over it, we can use the same reasoning to conclude that somewhere else in the array there are three
consecutive elements under the median, ordered as 𝐴𝐴[𝑗𝑗] < 𝐴𝐴[𝑗𝑗 + 1] > 𝐴𝐴[𝑗𝑗 + 2]. Since 𝐴𝐴[𝑖𝑖 + 1] > 𝐴𝐴[𝑗𝑗 + 1] (the former is over
the median and the latter under it), we can swap these two elements and get a solution that preserves all the inequalities
and is strictly better than the previous one.
Now we have enough information to deduce the most important statement:
If the order of elements in A satisfies the two principles described above, its value of S is

𝑆𝑆(𝐴𝐴) = |𝐴𝐴[0] −𝑚𝑚| + |𝐴𝐴[𝑁𝑁 − 1] −𝑚𝑚| + ∑ 2 ∙ |𝐴𝐴[𝑖𝑖] −𝑚𝑚|
𝑁𝑁−1

𝑖𝑖=1
,

where 𝑚𝑚 is the median of A.

107

Problem C: MaxDiff

It should be clear that this holds from the following argument: since for all 𝑖𝑖 elements 𝐴𝐴[𝑖𝑖] and 𝐴𝐴[𝑖𝑖 + 1] aren’t on the same
side of the median, their absolute difference is |𝐴𝐴[𝑖𝑖] − 𝐴𝐴[𝑖𝑖 + 1]| = |𝐴𝐴[𝑖𝑖] −𝑚𝑚| + |𝐴𝐴[𝑖𝑖 + 1] −𝑚𝑚|. For each element except the
first and the last one the term |𝐴𝐴[𝑖𝑖] −𝑚𝑚| appears twice in the final sum, while for the two edge elements it appears just once.
This gives us the final step in the solution: since all terms in the sum are non-negative, we just have to minimize the value
|𝐴𝐴[0] −𝑚𝑚| + |𝐴𝐴[𝑁𝑁 − 1] −𝑚𝑚|. If the total number of elements is even, we pick the two middle elements for the ends –
otherwise the zig-zag property would not hold. If it is odd, we pick the median element at one end and the element closest to
it by absolute value at the other.
Note that we don’t even have to generate the exact permutation, since all permutations 𝑝𝑝(𝐴𝐴) constructed in this way will
have the same value 𝑆𝑆(𝑝𝑝(𝐴𝐴)) and the above discussion gives us the guarantee that permutations which don’t satisfy these
conditions cannot possibly result in a better solution.
The implementation ends up being very simple: first we find the median of the array A, then we find the edge elements as
described in the previous paragraph, and finally we sum up the absolute differences of the elements from the median,
multiplying by two for all except the leftmost and the rightmost element.
There are still some traps that need to be avoided – edge cases with a very small number of elements need to be dealt with,
the solution has to be kept in a 64-bit value, repeating values can pose a problem for certain implementations. However,
none of that should present a serious challenge for any competitor with decent technique.

Complexity

There is a choice for the algorithm used to calculate the median. The simplest way is to sort all the elements and pick the
one(s) in the middle, which takes 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁) time. We can do better – the well-known quickSelect algorithm gives expected
𝑂𝑂(𝑁𝑁) time. Although its running time depends on the pivot choice and its worst-case complexity is 𝑂𝑂(𝑁𝑁2), median-of-three
or just random pivot choice should be enough since none of the test cases targeted this scenario (at least not intentionally).
For the more paranoid contestants, the pivot can be chosen using the median-of-medians algorithm, which guarantees 𝑂𝑂(𝑁𝑁)
running time but is tricky to implement and slower on average than simple quickSelect.
The rest of the algorithm can be done in a single pass of the array, giving an overall 𝑂𝑂(𝑁𝑁) time complexity of the algorithm.
The memory complexity is obviously 𝑂𝑂(𝑁𝑁).

108

Problem C: MaxDiff

It should be clear that this holds from the following argument: since for all 𝑖𝑖 elements 𝐴𝐴[𝑖𝑖] and 𝐴𝐴[𝑖𝑖 + 1] aren’t on the same
side of the median, their absolute difference is |𝐴𝐴[𝑖𝑖] − 𝐴𝐴[𝑖𝑖 + 1]| = |𝐴𝐴[𝑖𝑖] −𝑚𝑚| + |𝐴𝐴[𝑖𝑖 + 1] −𝑚𝑚|. For each element except the
first and the last one the term |𝐴𝐴[𝑖𝑖] −𝑚𝑚| appears twice in the final sum, while for the two edge elements it appears just once.
This gives us the final step in the solution: since all terms in the sum are non-negative, we just have to minimize the value
|𝐴𝐴[0] −𝑚𝑚| + |𝐴𝐴[𝑁𝑁 − 1] −𝑚𝑚|. If the total number of elements is even, we pick the two middle elements for the ends –
otherwise the zig-zag property would not hold. If it is odd, we pick the median element at one end and the element closest to
it by absolute value at the other.
Note that we don’t even have to generate the exact permutation, since all permutations 𝑝𝑝(𝐴𝐴) constructed in this way will
have the same value 𝑆𝑆(𝑝𝑝(𝐴𝐴)) and the above discussion gives us the guarantee that permutations which don’t satisfy these
conditions cannot possibly result in a better solution.
The implementation ends up being very simple: first we find the median of the array A, then we find the edge elements as
described in the previous paragraph, and finally we sum up the absolute differences of the elements from the median,
multiplying by two for all except the leftmost and the rightmost element.
There are still some traps that need to be avoided – edge cases with a very small number of elements need to be dealt with,
the solution has to be kept in a 64-bit value, repeating values can pose a problem for certain implementations. However,
none of that should present a serious challenge for any competitor with decent technique.

Complexity

There is a choice for the algorithm used to calculate the median. The simplest way is to sort all the elements and pick the
one(s) in the middle, which takes 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁) time. We can do better – the well-known quickSelect algorithm gives expected
𝑂𝑂(𝑁𝑁) time. Although its running time depends on the pivot choice and its worst-case complexity is 𝑂𝑂(𝑁𝑁2), median-of-three
or just random pivot choice should be enough since none of the test cases targeted this scenario (at least not intentionally).
For the more paranoid contestants, the pivot can be chosen using the median-of-medians algorithm, which guarantees 𝑂𝑂(𝑁𝑁)
running time but is tricky to implement and slower on average than simple quickSelect.
The rest of the algorithm can be done in a single pass of the array, giving an overall 𝑂𝑂(𝑁𝑁) time complexity of the algorithm.
The memory complexity is obviously 𝑂𝑂(𝑁𝑁).

Problem D: Cars

Problem D: Cars
Statement:
There are 𝑛𝑛 cars parked at the parking lot and a new car is arriving. The parking lot is a space between two walls and cars
are parked along one line between those walls. The driver will park his car if there is a free parking spot that is long
enough (at least as long as the car). Otherwise, he will have to move a few cars in order to make appropriate space for his
car. The car can be moved to the left or to the right along the parking lot, but at most until it reaches a wall or another
car.
Your task is to find the minimal total distance by which currently parked cars have to be moved in order to provide
enough space for the arriving car.

Figure 1. Optimal car moves for the given example.

Input:
The first line of input contains three space-separated integers 𝑛𝑛, 𝑙𝑙𝑙𝑙 and 𝑟𝑟𝑟𝑟. They denote the number of cars already
parked, the coordinate of the left wall and the coordinate of the right wall, respectively. Each of the following 𝑛𝑛 lines
contains two integers, describing a parked car: 𝑝𝑝 – the coordinate of the leftmost point of the car, and 𝑙𝑙 – the length of the
car. The last line of the input contains one integer 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙, the length of the arriving car.

Output:
Output contains only one line with one integer – the sum of distances by which parked cars have to be moved to provide
enough space for the arriving car. If a solution doesn’t exist, the output should be −1.

Constraints:
• 0 ≤ n ≤ 105
• 0 ≤ lw, rw, p[i] ≤ 2 ⋅109
• 1 ≤ l[i], lnew ≤ 106

109

Problem D: Cars

Example input: Example output:
4 0 22
2 3
7 3
11 2
16 4
7

5

Example explanation:
The best way is to push the second car to the left by 1, the third car to the left by 2 and the fourth car to the right by 2. It
will create an empty space of length 7, so the new car can be parked there. The sum of all movement lengths is 5 (= 1 + 2
+ 2).

> Time and memory limit: 0.5s / 64MB

110

Problem D: Cars

Example input: Example output:
4 0 22
2 3
7 3
11 2
16 4
7

5

Example explanation:
The best way is to push the second car to the left by 1, the third car to the left by 2 and the fourth car to the right by 2. It
will create an empty space of length 7, so the new car can be parked there. The sum of all movement lengths is 5 (= 1 + 2
+ 2).

> Time and memory limit: 0.5s / 64MB

Problem D: Cars

Solution and analysis:
Let’s enumerate the cars with 1 to 𝑛𝑛 from left to right. (To be able to do that, we will need to sort the array of cars first).
Consider each car in turn. For each car 𝐾𝐾, find the first car 𝐽𝐽 (𝐽𝐽 > 𝐾𝐾), such that the sum of free parking spots between 𝐾𝐾 and 𝐽𝐽
is greater than the length of the new car. For each such pair 𝑘𝑘, 𝑗𝑗 we will find the optimal solution, and then use these to
compute the global minimum.
Let’s consider a given pair of cars (𝐾𝐾, 𝐽𝐽). In the case that the pair (𝐾𝐾 + 1, 𝐽𝐽) also satisfies the total empty length constraint, we
can narrow down the search space by removing car 𝐾𝐾 from the set of cars for which we will consider moves. We will repeat
this process as long as removing the leftmost car will still satisfy the total empty space length constraint. Let’s denote the
leftmost car remaining in this set with 𝐼𝐼.

Let’s enumerate empty spaces between cars 𝐼𝐼 and 𝐽𝐽 with numbers 0. . (𝐽𝐽 − 𝐼𝐼). We will find the first empty space 𝑚𝑚 such that
∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑦𝑦)≥𝑚𝑚
𝑦𝑦=0 ∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑦𝑦)𝐽𝐽−𝐼𝐼

𝑦𝑦=0
2 . We will move every car in the direction of whichever car (𝐼𝐼 or 𝐽𝐽) is closer to it, in order to reduce

the total distance covered. In this way, the upper bound on the distance any given car can move is
∑ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑦𝑦)𝑗𝑗−𝑖𝑖
𝑦𝑦=0

2 , whereas if
we moved any car in the other direction (to the car which is farther away from it) this upper bound would be greater.
Let’s define four values for every car:

• 𝐹𝐹𝐹𝐹𝐿𝐿(𝐼𝐼) = ∑𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝐼𝐼 – Cost for moving car 𝐼𝐼 to the leftmost position possible (if all cars before it
were parked consecutively from the left wall, with no space between cars).

• 𝐶𝐶𝐶𝐶𝐿𝐿(𝐼𝐼) = ∑ 𝐹𝐹𝑆𝑆𝐿𝐿(𝐼𝐼)𝐼𝐼
𝑋𝑋=0 – total cost for moving all cars from 0 to 𝐼𝐼 (inclusive) to the left wall.

• Another pair of arrays 𝐹𝐹𝑆𝑆𝑅𝑅 ,𝐶𝐶𝐶𝐶𝑅𝑅 , representing free space and total cost of moving to the right wall.
These values can be pre-computed in 𝑂𝑂(𝑛𝑛) time with two passes through the array.
We would like to compute the cost of moving all cars between 𝐼𝐼 and 𝐽𝐽 away from the middle (𝑚𝑚), without moving any other
cars.

Consider only cars 𝐼𝐼, 𝐿𝐿 (The rightmost car moved to the left) and 𝐼𝐼 − 1. We will separately calculate the cost of moving cars to
the left and to the right. The cost can be calculated in the following way:
The cost of moving car 𝐿𝐿 and all cars left of it to the left wall is 𝐶𝐶𝐶𝐶𝐿𝐿(𝐿𝐿).

m

111

Problem D: Cars

If we moved all cars left of car 𝐼𝐼 − 1 (inclusive) to the left wall and all cars from 𝐼𝐼 to 𝐿𝐿 to the car 𝐼𝐼, the cost difference between
this configuration and the previous is 𝐹𝐹𝐹𝐹𝐿𝐿(𝐼𝐼) ∗ (𝐿𝐿 − 𝐼𝐼). (It is the cost of moving 𝐿𝐿 − 𝐼𝐼 cars to the right by the sum of empty
spaces left of 𝐼𝐼).

Now we can determine the cost of moving only cars from 𝐼𝐼 to 𝐿𝐿 to the left towards car 𝐼𝐼. Since the cost difference between
this configuration and the previous is 𝐶𝐶𝐶𝐶𝐿𝐿(𝐼𝐼 − 1),
This cost can be calculated as:

 Cost(𝐼𝐼, 𝐿𝐿) = 𝐶𝐶𝐶𝐶𝐿𝐿(𝐿𝐿) − 𝐶𝐶𝐶𝐶𝐿𝐿(𝐼𝐼 − 1) + 𝐹𝐹𝐹𝐹𝐿𝐿(𝑖𝑖) ∗ (𝐿𝐿 − 𝐼𝐼)

In the same way (using pre-computed 𝐹𝐹𝐹𝐹𝑅𝑅,𝐶𝐶𝐶𝐶𝑅𝑅), we can determine the cost of moving remaining cars between 𝐼𝐼 and 𝐽𝐽 to the
right in the consecutive configuration without moving 𝐽𝐽.

The only issue here is that we may have created more space than what is needed for the new car. To reduce the cost, we
should first compare 𝐿𝐿 − 𝐼𝐼 and 𝐽𝐽 − 𝐿𝐿 (the number of cars we moved to the left and the number of cars we moved to the
right).
Let 𝑊𝑊 be the sum of empty spaces between cars 𝐼𝐼 and 𝐽𝐽 and let 𝑆𝑆 be the space we created for the new car:

𝑊𝑊 = 𝐹𝐹𝐹𝐹𝐿𝐿(𝐽𝐽) − 𝐹𝐹𝐹𝐹𝐿𝐿(𝐼𝐼)
𝑆𝑆 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟) −𝑊𝑊

Let’s say that:

𝐿𝐿 − 𝐼𝐼 ≥ 𝐽𝐽 − 𝐿𝐿

In this case, the cost for creating the empty space to fit the new car should be reduced by 𝑆𝑆 ⋅ (𝐿𝐿 − 𝐼𝐼):

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) −𝑊𝑊) ∗ (𝐿𝐿 − 𝐼𝐼)

In the case that we moved more cars to the right than to the left the same logic applies using the values from 𝐹𝐹𝐹𝐹𝑅𝑅 and 𝐶𝐶𝐶𝐶𝑅𝑅 .
After calculating 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 for each car as a first car (𝐼𝐼), we should easily be able to pick the best one. The time
complexity of the solution is dominated by the initial sort – the rest of the algorithm is linear. This means that the overall
time complexity is 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁).

112

Problem D: Cars

If we moved all cars left of car 𝐼𝐼 − 1 (inclusive) to the left wall and all cars from 𝐼𝐼 to 𝐿𝐿 to the car 𝐼𝐼, the cost difference between
this configuration and the previous is 𝐹𝐹𝐹𝐹𝐿𝐿(𝐼𝐼) ∗ (𝐿𝐿 − 𝐼𝐼). (It is the cost of moving 𝐿𝐿 − 𝐼𝐼 cars to the right by the sum of empty
spaces left of 𝐼𝐼).

Now we can determine the cost of moving only cars from 𝐼𝐼 to 𝐿𝐿 to the left towards car 𝐼𝐼. Since the cost difference between
this configuration and the previous is 𝐶𝐶𝐶𝐶𝐿𝐿(𝐼𝐼 − 1),
This cost can be calculated as:

 Cost(𝐼𝐼, 𝐿𝐿) = 𝐶𝐶𝐶𝐶𝐿𝐿(𝐿𝐿) − 𝐶𝐶𝐶𝐶𝐿𝐿(𝐼𝐼 − 1) + 𝐹𝐹𝐹𝐹𝐿𝐿(𝑖𝑖) ∗ (𝐿𝐿 − 𝐼𝐼)

In the same way (using pre-computed 𝐹𝐹𝐹𝐹𝑅𝑅,𝐶𝐶𝐶𝐶𝑅𝑅), we can determine the cost of moving remaining cars between 𝐼𝐼 and 𝐽𝐽 to the
right in the consecutive configuration without moving 𝐽𝐽.

The only issue here is that we may have created more space than what is needed for the new car. To reduce the cost, we
should first compare 𝐿𝐿 − 𝐼𝐼 and 𝐽𝐽 − 𝐿𝐿 (the number of cars we moved to the left and the number of cars we moved to the
right).
Let 𝑊𝑊 be the sum of empty spaces between cars 𝐼𝐼 and 𝐽𝐽 and let 𝑆𝑆 be the space we created for the new car:

𝑊𝑊 = 𝐹𝐹𝐹𝐹𝐿𝐿(𝐽𝐽) − 𝐹𝐹𝐹𝐹𝐿𝐿(𝐼𝐼)
𝑆𝑆 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑟𝑟) −𝑊𝑊

Let’s say that:

𝐿𝐿 − 𝐼𝐼 ≥ 𝐽𝐽 − 𝐿𝐿

In this case, the cost for creating the empty space to fit the new car should be reduced by 𝑆𝑆 ⋅ (𝐿𝐿 − 𝐼𝐼):

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ(𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) −𝑊𝑊) ∗ (𝐿𝐿 − 𝐼𝐼)

In the case that we moved more cars to the right than to the left the same logic applies using the values from 𝐹𝐹𝐹𝐹𝑅𝑅 and 𝐶𝐶𝐶𝐶𝑅𝑅 .
After calculating 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 for each car as a first car (𝐼𝐼), we should easily be able to pick the best one. The time
complexity of the solution is dominated by the initial sort – the rest of the algorithm is linear. This means that the overall
time complexity is 𝑂𝑂(𝑁𝑁 𝑙𝑙𝑙𝑙𝑙𝑙𝑁𝑁).

Problem E: Triangles

Problem E: Triangles
Statement:
You are given an array of positive integers. Find the maximal substring (i.e. a subset of at least three consecutive elements
of the array) so that any three distinct elements from that substring can form the sides of a triangle. Also, find the maximal
subsequence (a subset consisting of at least three elements, not necessarily consecutive) with the same property.

Input:
The first line of input contains one integer 𝑛𝑛, the number of elements in the array. The next 𝑛𝑛 lines contain the elements of
the array.

Output:
Output consists of exactly two lines, each containing one integer– the length of the maximal substring and the maximal
subsequence with the property described above, respectively. If such substring or subsequence doesn’t exist, the
corresponding value is zero.

Constraints:
• 1≤ n≤100,000

Example input: Example output:
5
60
30
20
40
60

3
4

Elements of the array are positive integers, each less than or equal to 109.

> Time and memory limit: 1.5s / 64MB

113

Problem E: Triangles

Solution and analysis:
Input size limit 100000 suggests that any solution to this problem should work in 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) time (or faster).

Part a (substring):

To verify that some substring fulfills the requirement, it is enough to check if the sum of two smallest numbers in a substring
is greater than the largest number in that substring. Indeed, if the inequality holds for these three elements, it will hold for
any three numbers in that substring.
There are several ways to find the length of the longest such substring, two of which will be explained here.

Solution 1:

Suppose that we want to check if there exists a substring of length 𝑘𝑘 with the described property. We can divide input array
into slots of length 𝑘𝑘 (the last slot may have less than 𝑘𝑘 elements). For each slot 𝑎𝑎[0]. .𝑎𝑎[𝑘𝑘 − 1], we can compute the
following arrays:
Prefix maximum: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[0],𝑎𝑎[1], … ,𝑎𝑎[𝑖𝑖 − 1]}
Suffix maximum: 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[𝑖𝑖 + 1],𝑎𝑎[𝑖𝑖 + 2], … , 𝑎𝑎[𝑘𝑘 − 1]}
Prefix minimum: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[0],𝑎𝑎[1], … ,𝑎𝑎[𝑖𝑖 − 1]}
Suffix minimum: 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[𝑖𝑖 + 1],𝑎𝑎[𝑖𝑖 + 2], … ,𝑎𝑎[𝑘𝑘 − 1]}
Prefix second minimum: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑎𝑎[0],𝑎𝑎[1], … , 𝑎𝑎[𝑖𝑖 − 1]} {𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖]})
Suffix second minimum: 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑎𝑎[𝑖𝑖 + 1],𝑎𝑎[𝑖𝑖 + 2], … ,𝑎𝑎[𝑘𝑘 − 1]} {𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖]})
With this pre-calculation, we can find the maximum, minimum and second minimum of any substring of input array of
length 𝑘𝑘 in constant time. Namely, any substring of length 𝑘𝑘 covers entirely one slot or lies in two consecutive slots, so min
and max are straightforward to compute using suffix arrays of the left slot and prefix arrays of the right slot, while computing
second min requires several comparisons between minima and second minima of two parts of the substring.
Acting as described, it is possible to check all substrings of length 𝑘𝑘 in linear time. Doing binary search on 𝑘𝑘 gives us an
𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) algorithm for the original problem.

114

Problem E: Triangles

Solution and analysis:
Input size limit 100000 suggests that any solution to this problem should work in 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) time (or faster).

Part a (substring):

To verify that some substring fulfills the requirement, it is enough to check if the sum of two smallest numbers in a substring
is greater than the largest number in that substring. Indeed, if the inequality holds for these three elements, it will hold for
any three numbers in that substring.
There are several ways to find the length of the longest such substring, two of which will be explained here.

Solution 1:

Suppose that we want to check if there exists a substring of length 𝑘𝑘 with the described property. We can divide input array
into slots of length 𝑘𝑘 (the last slot may have less than 𝑘𝑘 elements). For each slot 𝑎𝑎[0]. .𝑎𝑎[𝑘𝑘 − 1], we can compute the
following arrays:
Prefix maximum: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[0],𝑎𝑎[1], … ,𝑎𝑎[𝑖𝑖 − 1]}
Suffix maximum: 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[𝑖𝑖 + 1],𝑎𝑎[𝑖𝑖 + 2], … , 𝑎𝑎[𝑘𝑘 − 1]}
Prefix minimum: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[0],𝑎𝑎[1], … ,𝑎𝑎[𝑖𝑖 − 1]}
Suffix minimum: 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑎𝑎[𝑖𝑖 + 1],𝑎𝑎[𝑖𝑖 + 2], … ,𝑎𝑎[𝑘𝑘 − 1]}
Prefix second minimum: 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙2[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑎𝑎[0],𝑎𝑎[1], … , 𝑎𝑎[𝑖𝑖 − 1]} {𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖]})
Suffix second minimum: 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2[𝑖𝑖] = 𝑚𝑚𝑚𝑚𝑚𝑚({𝑎𝑎[𝑖𝑖 + 1],𝑎𝑎[𝑖𝑖 + 2], … ,𝑎𝑎[𝑘𝑘 − 1]} {𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[𝑖𝑖]})
With this pre-calculation, we can find the maximum, minimum and second minimum of any substring of input array of
length 𝑘𝑘 in constant time. Namely, any substring of length 𝑘𝑘 covers entirely one slot or lies in two consecutive slots, so min
and max are straightforward to compute using suffix arrays of the left slot and prefix arrays of the right slot, while computing
second min requires several comparisons between minima and second minima of two parts of the substring.
Acting as described, it is possible to check all substrings of length 𝑘𝑘 in linear time. Doing binary search on 𝑘𝑘 gives us an
𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) algorithm for the original problem.

Problem E: Triangles

Solution 2:

We start with the substring consisting of the first three elements of the input array. If the current substring has the required
property, we move the right boundary of the substring forward, introducing a new element into it; otherwise we move
forward the left boundary of the substring, removing one element form the substring.
To check if the substring has the triangle property, we can use one heap that extracts maximum, and one that extracts
minimum - let’s call the heaps 𝑀𝑀 and 𝑚𝑚 respectively. When the right boundary moves, we just put a new element into both
heaps. Moving the left boundary requires removing one particular element from both heaps. Instead of removing that
element immediately, we can use two auxiliary heaps (again, one for max and one for min, call them 𝑀𝑀𝑎𝑎 and 𝑚𝑚𝑎𝑎) and put
the element that should have been removed there. As long as that element is not equal to max of the heap 𝑀𝑀, it doesn’t
matter if it is present in the heap or not. So every time we extract the max of heap 𝑀𝑀, we also extract the max of 𝑀𝑀𝑎𝑎; if they
are not equal, the max is regular and we can use it (we just put back the max of 𝑀𝑀𝑎𝑎); if the two maxima are equal, we do the
(delayed) removal from both 𝑀𝑀 and 𝑀𝑀𝑎𝑎, and get another max from both until they differ. We do the same with heaps 𝑚𝑚 and
𝑚𝑚𝑎𝑎 for extraction of the minimal element.
Getting min/max from the heap and putting a new element into all 4 heaps requires 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) time, so we can check one
particular substring in logarithmic time. Since after each check one of the substring’s boundaries moves forward, there are
𝑂𝑂(𝑛𝑛) substrings to check, so the total running time is again 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛).

Part b (subsequence):

It is easy to prove that if some elements of a sorted array form a subset with the described property, then the entire segment
(from minimal to maximal element of the subset) also has the property. So, , the maximal subset of the original array with
the described property is a substring of the sorted array.
Therefore, to solve part b, it is enough to sort the input array and then search for the longest substring using (any) solution of
part a. The running time of such algorithm would be 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) for sorting and O(n log n) for finding the longest substring,
which gives 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) in total.
It is also possible to find the longest substring with the given property in a sorted array more directly. Obviously, the two
smallest elements are the first two elements of a substring, and the largest is the last one, so there is no need to use heaps or
auxiliary prefix/suffix arrays to find minima and maxima of a substring. The running time in this case is still 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) due
to sorting, even though finding the longest substring in a sorted array can be done in linear time.

115

Problem F: Olympic Games

Problem F: Olympic Games
Statement:
Young boy, Oliver, has watched the Olympic Games this year for the first time. The number of countries which participated
in the Olympics is 𝑛𝑛. There are 𝑘𝑘 different sports and each country had its own representative in some of the 𝑘𝑘 sports. In
each sport the gold medal is won by exactly one country among the ones that have representatives for that sport. And, of
course, for every sport there is at least one country which competes in it.
Oliver noticed that a small number of countries won a huge number of gold medals, and that a lot of countries didn’t win
any. Now, he is wondering what could be the minimal difference in the number of gold medals between the country
which took the most and the country which took the least. Oliver is still too young to figure out the answer to this
question, so please help him.

Input:
The first line contains 𝑛𝑛, the number of participating countries. The second line contains 𝑘𝑘, the number of sports. The third
line contains the total number of competitors, 𝑚𝑚. Each of the next m lines contains two integers, 𝑐𝑐 and 𝑠𝑠, which mean that
country 𝑐𝑐 had a representative in sport 𝑠𝑠.

Output:
Output contains only one integer – the minimal possible difference in the course country by ne country wins a gold
medal depending on the implementation, but not more than O(N)f the algorithm number of gold medals between the
country which took the most gold medals and the country which took the least.

Constraints:
• 2 ≤ n ≤ 100
• 1 ≤ k ≤ 500
• 0 ≤ ci ≤ n-1, 0 ≤ si ≤ k-1 for each i
• No pair (ci, si) is contained in the input more than once

Example input: Example output:
3
4
6
0 0
0 1
0 2
1 2
1 3
2 3

1

> Time and memory limit: 0.5s / 64MB

116

Problem F: Olympic Games

Problem F: Olympic Games
Statement:
Young boy, Oliver, has watched the Olympic Games this year for the first time. The number of countries which participated
in the Olympics is 𝑛𝑛. There are 𝑘𝑘 different sports and each country had its own representative in some of the 𝑘𝑘 sports. In
each sport the gold medal is won by exactly one country among the ones that have representatives for that sport. And, of
course, for every sport there is at least one country which competes in it.
Oliver noticed that a small number of countries won a huge number of gold medals, and that a lot of countries didn’t win
any. Now, he is wondering what could be the minimal difference in the number of gold medals between the country
which took the most and the country which took the least. Oliver is still too young to figure out the answer to this
question, so please help him.

Input:
The first line contains 𝑛𝑛, the number of participating countries. The second line contains 𝑘𝑘, the number of sports. The third
line contains the total number of competitors, 𝑚𝑚. Each of the next m lines contains two integers, 𝑐𝑐 and 𝑠𝑠, which mean that
country 𝑐𝑐 had a representative in sport 𝑠𝑠.

Output:
Output contains only one integer – the minimal possible difference in the course country by ne country wins a gold
medal depending on the implementation, but not more than O(N)f the algorithm number of gold medals between the
country which took the most gold medals and the country which took the least.

Constraints:
• 2 ≤ n ≤ 100
• 1 ≤ k ≤ 500
• 0 ≤ ci ≤ n-1, 0 ≤ si ≤ k-1 for each i
• No pair (ci, si) is contained in the input more than once

Example input: Example output:
3
4
6
0 0
0 1
0 2
1 2
1 3
2 3

1

> Time and memory limit: 0.5s / 64MB

Problem F: Olympic Games

Solution and analysis:
Let’s describe the algorithm for solving this problem. Initially, no sport is assigned to any country. Going circularly through all
countries we try to assign new sport to the currently considered country, while maintaining the number of sports assigned to
other countries (actually, we try to find an augmenting path in a bipartite graph which starts from the country being
considered and ends at some yet unused sport). If at some moment no new augmenting path for a particular country exists,
we can skip that country in all subsequent iterations in order to save time. Since for every sport there is at least one country
which competes in it, after a certain number of iterations each sport will be assigned to some country.
By this algorithm we get a matching where the number of gold medals taken by country with the minimal number of gold
medals is maximal and the number of gold medals taken by the country with the maximal number of gold medals is
minimal. Therefore, this matching has the desired property that the difference between these two values is minimal.
As the number of iterations which can find augmenting paths is at most 𝑘𝑘 + 𝑛𝑛 − 1 (there are at most 𝑛𝑛 − 1 unsuccessful
findings) and each augmenting path can be found in 𝑂𝑂(𝐸𝐸) time, where 𝐸𝐸 is the number of edges, the time complexity of the
solution is 𝑂𝑂((𝑛𝑛 + 𝑘𝑘) ⋅ 𝑛𝑛 ⋅ 𝑘𝑘). The memory complexity is 𝑂𝑂(𝑛𝑛 ⋅ 𝑘𝑘).

117

Problem G: Matrix

Problem G: Matrix
Statement:
You are given a square binary matrix 𝐴𝐴 of dimension 𝑁𝑁 × 𝑁𝑁. Elements on the main diagonal are all ones. We want to
compute the 77,686,783th power of this matrix (MDCS written in ASCII codes is (77,68,67,83)). To make things more
interesting, we will define binary operations + (addition) and ⋅ (multiplication) as the following:

+ 0 1

0 0 1

1 1 1

⋅ 0 1

0 0 0

1 0 1

So basically, addition is logical OR and multiplication is logical AND.
The input matrix is too big for normal time constraints, so it will be given by listing all positions of ones in it. Also, for the
output only the number of ones in the 77,686,783th power of the matrix is sufficient.

Input:
The first line contains two integers, 𝑁𝑁 and 𝑀𝑀 - dimension of the square matrix 𝐴𝐴 and the number of ones in it. Each of the
next 𝑀𝑀 lines contains two integers 𝑥𝑥 and 𝑦𝑦 – which means that 𝐴𝐴𝑥𝑥,𝑦𝑦 is equal to 1.

Output:
Output contains only one integer– the number of ones in the 77,686,783th power of the given matrix.

Constraints:
• 1 ≤ N ≤ 5,000
• N ≤ M ≤ 200,000
• Indices 𝑥𝑥 and 𝑦𝑦 from the input satisfy the condition 1 ≤ x,y ≤ N and these pairs are unique.
• The matrix elements are 0 or 1 and the elements on the main diagonal all ones. All elements that are not listed in

the input have zero value.

118

Problem G: Matrix

Problem G: Matrix
Statement:
You are given a square binary matrix 𝐴𝐴 of dimension 𝑁𝑁 × 𝑁𝑁. Elements on the main diagonal are all ones. We want to
compute the 77,686,783th power of this matrix (MDCS written in ASCII codes is (77,68,67,83)). To make things more
interesting, we will define binary operations + (addition) and ⋅ (multiplication) as the following:

+ 0 1

0 0 1

1 1 1

⋅ 0 1

0 0 0

1 0 1

So basically, addition is logical OR and multiplication is logical AND.
The input matrix is too big for normal time constraints, so it will be given by listing all positions of ones in it. Also, for the
output only the number of ones in the 77,686,783th power of the matrix is sufficient.

Input:
The first line contains two integers, 𝑁𝑁 and 𝑀𝑀 - dimension of the square matrix 𝐴𝐴 and the number of ones in it. Each of the
next 𝑀𝑀 lines contains two integers 𝑥𝑥 and 𝑦𝑦 – which means that 𝐴𝐴𝑥𝑥,𝑦𝑦 is equal to 1.

Output:
Output contains only one integer– the number of ones in the 77,686,783th power of the given matrix.

Constraints:
• 1 ≤ N ≤ 5,000
• N ≤ M ≤ 200,000
• Indices 𝑥𝑥 and 𝑦𝑦 from the input satisfy the condition 1 ≤ x,y ≤ N and these pairs are unique.
• The matrix elements are 0 or 1 and the elements on the main diagonal all ones. All elements that are not listed in

the input have zero value.

Problem G: Matrix

Example input: Example output:
4 8
1 1
1 3
1 4
2 2
2 3
3 1
3 3
4 4

11

Example explanation:

From the input we have that 𝐴𝐴 = [
1 0 1 1
0 1 1 0
1 0 1 0
0 0 0 1

]. Its 77,686,783th power is [
1 0 1 1
1 1 1 1
1 0 1 1
0 0 0 1

], which has 11 ones in it.

Note:
For two square matrices 𝐴𝐴 and 𝐵𝐵 with dimensions 𝑁𝑁 × 𝑁𝑁, we say that matrix 𝐶𝐶, with the same dimension, is product of
these two matrices if:

𝐶𝐶𝑖𝑖,𝑗𝑗 = 𝐴𝐴𝑖𝑖,1 ⋅ 𝐵𝐵1,𝑗𝑗 + 𝐴𝐴2,1 ⋅ 𝐵𝐵2,𝑗𝑗 + ⋯+ 𝐴𝐴𝑖𝑖,𝑁𝑁 ⋅ 𝐵𝐵𝑁𝑁,𝑗𝑗, for every 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁

> Time and memory limit: 2.0s / 64MB

119

Problem G: Matrix

Solution and analysis:
At first glance, this problem requires fast multiplication of the sparse binary matrices with a given definition for operations.
This is known and very hard problem for implementation. The standard approach for matrix multiplication gives as time
complexity 𝑂𝑂(𝑛𝑛 ⋅ 𝑛𝑛3) which is very big for the problem constraints. Logarithmic powering is also too slow. But, in our case
solution has nothing to do with this – this is a graph theory problem.
Before we start the analysis of this problem, let’s look at the adjacency matrix 𝐴𝐴 of an arbitrary directed graph 𝐺𝐺 = 𝐺𝐺(𝑉𝑉,𝐸𝐸).
As we know, the adjacency matrix is a binary one and its element 𝐴𝐴[𝑣𝑣][𝑢𝑢] is equal to 1 if and only if there is an edge from
vertex 𝑣𝑣 to vertex 𝑢𝑢 (directed edge). The adjacency matrix is a square one, so it is allowed to consider powers of this matrix:
𝐴𝐴𝑘𝑘, for every 𝑘𝑘 ∈ 𝑁𝑁0. From now on we will assume that operations are defined as in the problem statement.
Can we, with some corresponding graph property, define the square of the matrix 𝐴𝐴? The element at position (𝑣𝑣,𝑢𝑢) is going
to be equal to one if and only if there is a vertex 𝑘𝑘 such that 𝐴𝐴[𝑣𝑣][𝑘𝑘] = 1 and 𝐴𝐴[𝑘𝑘][𝑢𝑢] = 1. This means that 𝐴𝐴2 [𝑣𝑣][𝑢𝑢] is equal
to 1 if and only if there is a path of length 2 in the starting graph 𝐺𝐺. Using mathematical induction, we can prove the
following property:

• 𝐴𝐴𝑘𝑘[𝑣𝑣][𝑢𝑢] = 1 if and only if there is a path from vertex 𝑣𝑣 to vertex 𝑢𝑢 of length 𝑘𝑘.

We have an additional property of the start matrix: elements on the main diagonal are ones. This means that all of the
vertices have loops. In other words, we can “circle” around any vertex for an arbitrarily long time. So, if there is a path of
length 𝑘𝑘 between vertices 𝑣𝑣 and 𝑢𝑢, then there is path of length 𝑘𝑘1 between them for every 𝑘𝑘1 > 𝑘𝑘 (we can just append a
“circle” of length 𝑘𝑘1 − 𝑘𝑘 to path). This means that, with the above property of matrix 𝐴𝐴, we have

• 𝑨𝑨𝒌𝒌[𝒗𝒗][𝒖𝒖] = 𝟏𝟏 if and only if there is a path from vertex 𝒗𝒗 to vertex 𝒖𝒖 of length less than or equal to 𝒌𝒌.

Now we can go back to our original problem. In the input we have a directed graph 𝐺𝐺 with 𝑛𝑛 vertices and 𝑚𝑚 edges, where
every vertex has a loop. From the above definition of the element 𝐴𝐴𝑘𝑘[𝑣𝑣][𝑢𝑢], we have that starting from 𝑘𝑘 > 𝑛𝑛 power of matrix
𝐴𝐴 is not going to change. This is very important, because in this way we have to calculate the 𝑛𝑛-th power, and of course 𝑛𝑛 <
77,686,783. The problem can be reformulated as:

• find the number of edges in the transitive closure of the given graph 𝐺𝐺,
• i.e. for every vertex calculate the number of vertices that are reachable from it

Naïve approach for the transitive closure leads to complexity 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚) – graph tour, DFS or BFS, from every vertex separately.
A better idea is to find the strongly connected components (SCC) first. In this way, submatrices for every component have all
elements equal to one (so we do not want to “waste” time there). After finding the SCCs, we can shrink every component to
just one “vertex”. In this way we can obtain a directed acyclic graph (DAG).

120

Problem G: Matrix

Solution and analysis:
At first glance, this problem requires fast multiplication of the sparse binary matrices with a given definition for operations.
This is known and very hard problem for implementation. The standard approach for matrix multiplication gives as time
complexity 𝑂𝑂(𝑛𝑛 ⋅ 𝑛𝑛3) which is very big for the problem constraints. Logarithmic powering is also too slow. But, in our case
solution has nothing to do with this – this is a graph theory problem.
Before we start the analysis of this problem, let’s look at the adjacency matrix 𝐴𝐴 of an arbitrary directed graph 𝐺𝐺 = 𝐺𝐺(𝑉𝑉,𝐸𝐸).
As we know, the adjacency matrix is a binary one and its element 𝐴𝐴[𝑣𝑣][𝑢𝑢] is equal to 1 if and only if there is an edge from
vertex 𝑣𝑣 to vertex 𝑢𝑢 (directed edge). The adjacency matrix is a square one, so it is allowed to consider powers of this matrix:
𝐴𝐴𝑘𝑘, for every 𝑘𝑘 ∈ 𝑁𝑁0. From now on we will assume that operations are defined as in the problem statement.
Can we, with some corresponding graph property, define the square of the matrix 𝐴𝐴? The element at position (𝑣𝑣,𝑢𝑢) is going
to be equal to one if and only if there is a vertex 𝑘𝑘 such that 𝐴𝐴[𝑣𝑣][𝑘𝑘] = 1 and 𝐴𝐴[𝑘𝑘][𝑢𝑢] = 1. This means that 𝐴𝐴2 [𝑣𝑣][𝑢𝑢] is equal
to 1 if and only if there is a path of length 2 in the starting graph 𝐺𝐺. Using mathematical induction, we can prove the
following property:

• 𝐴𝐴𝑘𝑘[𝑣𝑣][𝑢𝑢] = 1 if and only if there is a path from vertex 𝑣𝑣 to vertex 𝑢𝑢 of length 𝑘𝑘.

We have an additional property of the start matrix: elements on the main diagonal are ones. This means that all of the
vertices have loops. In other words, we can “circle” around any vertex for an arbitrarily long time. So, if there is a path of
length 𝑘𝑘 between vertices 𝑣𝑣 and 𝑢𝑢, then there is path of length 𝑘𝑘1 between them for every 𝑘𝑘1 > 𝑘𝑘 (we can just append a
“circle” of length 𝑘𝑘1 − 𝑘𝑘 to path). This means that, with the above property of matrix 𝐴𝐴, we have

• 𝑨𝑨𝒌𝒌[𝒗𝒗][𝒖𝒖] = 𝟏𝟏 if and only if there is a path from vertex 𝒗𝒗 to vertex 𝒖𝒖 of length less than or equal to 𝒌𝒌.

Now we can go back to our original problem. In the input we have a directed graph 𝐺𝐺 with 𝑛𝑛 vertices and 𝑚𝑚 edges, where
every vertex has a loop. From the above definition of the element 𝐴𝐴𝑘𝑘[𝑣𝑣][𝑢𝑢], we have that starting from 𝑘𝑘 > 𝑛𝑛 power of matrix
𝐴𝐴 is not going to change. This is very important, because in this way we have to calculate the 𝑛𝑛-th power, and of course 𝑛𝑛 <
77,686,783. The problem can be reformulated as:

• find the number of edges in the transitive closure of the given graph 𝐺𝐺,
• i.e. for every vertex calculate the number of vertices that are reachable from it

Naïve approach for the transitive closure leads to complexity 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚) – graph tour, DFS or BFS, from every vertex separately.
A better idea is to find the strongly connected components (SCC) first. In this way, submatrices for every component have all
elements equal to one (so we do not want to “waste” time there). After finding the SCCs, we can shrink every component to
just one “vertex”. In this way we can obtain a directed acyclic graph (DAG).

Problem G: Matrix

Figure 1. Creating DAG graph from SCC components

Things are a little bit easier. If we assume that for every component we have a list of all components that are reachable from
it, we can easily transfer this to the start graph and calculate the final result. But how can we initialize these lists with the
given time constraints?
For DAG we can find its topological sort order. We can initialize the lists for every component in this order, because it holds
that by the time when we are examining some component, all components reachable from it are already initialized. Let us
denote with 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 the current component for which we want to initialize the list. Unfortunately, we cannot simply
“connect” all lists from their neighbors, because there can be some duplicates (see Figure 2 for example). On the other hand,
these lists can be 𝑂𝑂(𝑛𝑛) long, so the union of these sets must require passing through them multiple times.

Figure 2. Example of a topological sort and mask arrays (for the case of 2-bit numbers)

121

Problem G: Matrix

The best way to maintain these “lists” is to store them in some sort of marked array (when a component is in the “list” we are
going to mark the corresponding element). If we use simple boolean arrays, complexity will again be 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚). Idea is to use
bit masks. For every component we are going to store an array 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 of length ⌈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

64 ⌉ of long type. This way
we can mark some component 𝑐𝑐 in this array as

𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑐𝑐 𝐷𝐷𝐷𝐷𝐷𝐷 64] = 2𝑐𝑐 𝑀𝑀𝑀𝑀𝑀𝑀 64

In other words, for each component there is a unique corresponding bit in every array. Now, we can initialize the array for
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 by simply 𝑂𝑂𝑂𝑂-ing the arrays for its neighbor’s element-wise (which represents union). Note that although the
complexity remains 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚), the reduction of the constant factor is very significant.

Complexity:

In this problem we have quite a pipeline of graph algorithms. First, the complexity of finding SCCs and building a DAG is
𝑂𝑂(𝑚𝑚). Finding the topological order has the same complexity. Finally, performing the dynamic programming approach for
initialization of bit mask arrays as described above has 𝑂𝑂 (𝑛𝑛⋅𝑚𝑚64) complexity if we use a 64-bit integer type for bit masks.
Indeed, every array is going to be iterated for every component which has an edge directed at the corresponding component
for that array. So, for every edge we have one tour through some array. This brings us to the final complexity of 𝑂𝑂 (𝑛𝑛⋅𝑚𝑚64).

122

Problem G: Matrix

The best way to maintain these “lists” is to store them in some sort of marked array (when a component is in the “list” we are
going to mark the corresponding element). If we use simple boolean arrays, complexity will again be 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚). Idea is to use
bit masks. For every component we are going to store an array 𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑐𝑐𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 of length ⌈𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

64 ⌉ of long type. This way
we can mark some component 𝑐𝑐 in this array as

𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐[𝑐𝑐 𝐷𝐷𝐷𝐷𝐷𝐷 64] = 2𝑐𝑐 𝑀𝑀𝑀𝑀𝑀𝑀 64

In other words, for each component there is a unique corresponding bit in every array. Now, we can initialize the array for
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 by simply 𝑂𝑂𝑂𝑂-ing the arrays for its neighbor’s element-wise (which represents union). Note that although the
complexity remains 𝑂𝑂(𝑛𝑛 ⋅ 𝑚𝑚), the reduction of the constant factor is very significant.

Complexity:

In this problem we have quite a pipeline of graph algorithms. First, the complexity of finding SCCs and building a DAG is
𝑂𝑂(𝑚𝑚). Finding the topological order has the same complexity. Finally, performing the dynamic programming approach for
initialization of bit mask arrays as described above has 𝑂𝑂 (𝑛𝑛⋅𝑚𝑚64) complexity if we use a 64-bit integer type for bit masks.
Indeed, every array is going to be iterated for every component which has an edge directed at the corresponding component
for that array. So, for every edge we have one tour through some array. This brings us to the final complexity of 𝑂𝑂 (𝑛𝑛⋅𝑚𝑚64).

Problem G: Matrix

Test data:

The data corpus for this problem consists of 24 test cases. Test cases are created with one (or more) of the following methods:
• Random generation of a binary matrix with given probability for 1 and 0
• Generation of a matrix that corresponds to a tree with some additional cross or / and up edges
• Generation of a matrix that corresponds to a path with some additional edges
• Creating a SCC graph from a tree with cross edges and blossoming a SCC components in every vertex
• Special cases (triangle, all ones, only loops…)

Num 𝑵𝑵 𝑴𝑴 Comment
00 4 8 test case from problem statement
01 10 31 by hand
02 100 5187 Random with 𝑝𝑝 = 0.5
03 1000 1000 All zeros except on the main diagonal
04 500 125250 One in the upper triangle
05 2000 161804 Random with 𝑝𝑝 = 0.0.3
06 2500 127736 Random upper triangle with 𝑝𝑝 = 0.03
07 3000 5999 Random tree structure
08 3000 36871 Path with down edges
09 3000 193412 Expanded SCC graph with 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 450
10 5000 161017 Expanded SCC graph with 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1000
11 4000 67879 Random with 𝑝𝑝 = 0.0.3
12 3000 182515 Random tree structure with cross edges
13 5000 9999 Random tree structure
14 5000 59870 Random tree structure with down cross edges
15 5000 194846 Expanded SCC graph with small 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
16 5000 179948 Random with 𝑝𝑝 = 0.0.3
17 5000 196411 Path with down edges
18 5000 189283 Random tree structure with cross edges
19 5000 188570 Random tree structure with down cross edges
20 5000 184753 Expanded SCC graph with 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 1000
21 1 1 Only one vertex
22 4500 118341 Components: SCC, Tree, Path, Random
23 5000 143657 Components: big SCC, Tree, Path, Random

Table 1. Test data description

123

Problem H: String covering

Problem H: String covering
Statement:
We say that string 𝐵𝐵 covers string 𝐴𝐴 if 𝐴𝐴 can be obtained by putting together several copies of string 𝐵𝐵, where overlapping
between two successive copies of 𝐵𝐵 is allowed but the overlapped parts must match. After connecting these copies, the
whole generated string must match string 𝐴𝐴.
For example, string 𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 covers string 𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, with two copies (see Figure 1). String 𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑎𝑎 does not cover 𝐴𝐴,
because the last character 𝑏𝑏 cannot be covered.

Figure 1. All possible coverings of string 𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.

You are given string 𝐴𝐴. Write a program that calculates how many strings 𝐵𝐵 exist that cover string 𝐴𝐴 in this way.

Input:
The first and only line of the input contains string 𝐴𝐴.

Output:
Output contains only one integer – the number of different strings that cover given string 𝐴𝐴.

Constraints:
• 1 ≤ length (A) ≤ 100,000
• String 𝐴𝐴 consists exclusively of letters ‘a’ - ‘z’
• Output the final solution modulo 109 + 9

Example input: Example output:
ababab 3

> Time and memory limit: 1.0s / 64MB

124

Problem H: String covering

Problem H: String covering
Statement:
We say that string 𝐵𝐵 covers string 𝐴𝐴 if 𝐴𝐴 can be obtained by putting together several copies of string 𝐵𝐵, where overlapping
between two successive copies of 𝐵𝐵 is allowed but the overlapped parts must match. After connecting these copies, the
whole generated string must match string 𝐴𝐴.
For example, string 𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 covers string 𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, with two copies (see Figure 1). String 𝐵𝐵 = 𝑎𝑎𝑎𝑎𝑎𝑎 does not cover 𝐴𝐴,
because the last character 𝑏𝑏 cannot be covered.

Figure 1. All possible coverings of string 𝐴𝐴 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎.

You are given string 𝐴𝐴. Write a program that calculates how many strings 𝐵𝐵 exist that cover string 𝐴𝐴 in this way.

Input:
The first and only line of the input contains string 𝐴𝐴.

Output:
Output contains only one integer – the number of different strings that cover given string 𝐴𝐴.

Constraints:
• 1 ≤ length (A) ≤ 100,000
• String 𝐴𝐴 consists exclusively of letters ‘a’ - ‘z’
• Output the final solution modulo 109 + 9

Example input: Example output:
ababab 3

> Time and memory limit: 1.0s / 64MB

Problem H: String covering

Solution and analysis:
Problem H on this year’s BubbleCup finals was a string problem. For a given string 𝐴𝐴 it was asked to find how many strings
there exist that covers this string. We say that string 𝐵𝐵 covers string 𝐴𝐴 if 𝐴𝐴 can be obtained by putting several copies of string
𝐵𝐵 where overlapping between two successive copies of 𝐵𝐵 is allowed but the overlapped parts must match. After connection of
these copies whole generated string must match string 𝐴𝐴. First thing that we can observe is that necessary condition for
string 𝐵𝐵 is that it is some prefix of the string 𝐴𝐴. So, the asked modulo in the task description is only a small trick.
Now we know that the final answer is going to be smaller or equal to 𝑛𝑛 (solution is equal to 𝑛𝑛 if and only if all char in 𝐴𝐴 are
equal). Naïve approach would be to check every prefix of the string 𝐴𝐴. When testing for the prefix 𝐴𝐴𝑘𝑘 = 𝑎𝑎1𝑎𝑎2 …𝑎𝑎𝑘𝑘 we have to
find all occurrences of it as substrings in 𝐴𝐴 and then see if these occurrences covers whole string 𝐴𝐴 (here we can see that
string 𝐵𝐵 has to be an suffix as well). Complexity of this algorithm is approximately 𝑂𝑂(𝑛𝑛3), but it can be reduced to quadratic
with some hash functions for substrings. In any case this is too big for our constraints.
Can we, in some other way, track these occurrences for prefixes? Let us assume that for the prefix 𝐴𝐴𝑘𝑘 occurrences in the string
𝐴𝐴 starts at positions 1 = 𝑠𝑠1 < 𝑠𝑠2 < ⋯ < 𝑠𝑠𝑚𝑚. For the prefix 𝐴𝐴𝑘𝑘+1 start positions are subset of the start positions for 𝐴𝐴𝑘𝑘. Idea is
to store these occurrences in some nice way that can be updated fast when adding new character on the end (moving to the
next prefix).
For this we can use data structure: suffix array. Let us denote with 𝑠𝑠 suffix array – 𝑠𝑠 [𝑖𝑖] is equal to the start position of the 𝑖𝑖-th
suffix in the lexicographic order. Then the positions for prefixes 𝐴𝐴𝑘𝑘 are successive in the array 𝑠𝑠. For every prefix we can define
some segment in the suffix array [𝑙𝑙𝑘𝑘, 𝑟𝑟𝑘𝑘] which means that suffices in this segment starts with given prefix. Nice thing is that
these segments create an inclusive chain: [𝑙𝑙𝑘𝑘+1, 𝑟𝑟𝑘𝑘+1] ⊂ [𝑙𝑙𝑘𝑘, 𝑟𝑟𝑘𝑘]. In this way we can easily obtain segments.

Figure 1. Example of suffix array and prefix check.

125

Problem H: String covering

Now we have the start positions of occurrences for any prefix. Problem is to, in some efficient way, see if they cover the whole
string 𝐴𝐴. For this we must use additional data structure – max heap. In heap we are going to store the lengths between two
successive positions - gaps. When we remove some occurrence, we will remove two distances / gaps (from prior to current
one and from current one to next occurrence) and add the new one which is the sum of the removed ones (from prior to
next). Finally, we can state that current prefix covers the whole string if and only if the max element in the heap (max
distance between two successive occurrences) is smaller or equal to the prefix length.

==

initialization of the suffix array S;

sol = 0;

for k = 1 to n - 1 do

 add in heap key-value pair (k, 1);

segmentLeft = 1; segmentRight = n;

for k = 1 to n do

 while (char at position k of segmentLeft-th suffix is different from A [k]) do

 remove from heap key prior and segmentLeft;

 add in heap key-value pair (prior, next – prior);

 inc(segmentLeft);

 while (char at position k of segmentRight-th suffix is different from A [k]) do

 remove from heap key prior and segmentLeft;

 add in heap key-value pair (prior, next – prior);

 dec(segmentRight);

 if (max in heap <= k)

 inc(sol);

endfor

==

Figure 1. Pseudo code for described algorithm

Complexity:

Sorting the suffixes with suffix array takes 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) time. This can be implemented in the linear time but in our case, this is
sufficient. After that for every prefix, in order as in the given string, we are going to maintain the above segments in linear
time overall (in every step we are going to shrink current segment with only one compering of chars). For heap, every
position is going to be added exactly one time and removed at most one time. Taking all of this in to account we get the final
complexity:

𝑂𝑂(𝑛𝑛 log𝑛𝑛 + 𝑛𝑛 ⋅ 3 log𝑛𝑛) = 𝑂𝑂(𝑛𝑛 log𝑛𝑛).

126

Problem H: String covering

Now we have the start positions of occurrences for any prefix. Problem is to, in some efficient way, see if they cover the whole
string 𝐴𝐴. For this we must use additional data structure – max heap. In heap we are going to store the lengths between two
successive positions - gaps. When we remove some occurrence, we will remove two distances / gaps (from prior to current
one and from current one to next occurrence) and add the new one which is the sum of the removed ones (from prior to
next). Finally, we can state that current prefix covers the whole string if and only if the max element in the heap (max
distance between two successive occurrences) is smaller or equal to the prefix length.

==

initialization of the suffix array S;

sol = 0;

for k = 1 to n - 1 do

 add in heap key-value pair (k, 1);

segmentLeft = 1; segmentRight = n;

for k = 1 to n do

 while (char at position k of segmentLeft-th suffix is different from A [k]) do

 remove from heap key prior and segmentLeft;

 add in heap key-value pair (prior, next – prior);

 inc(segmentLeft);

 while (char at position k of segmentRight-th suffix is different from A [k]) do

 remove from heap key prior and segmentLeft;

 add in heap key-value pair (prior, next – prior);

 dec(segmentRight);

 if (max in heap <= k)

 inc(sol);

endfor

==

Figure 1. Pseudo code for described algorithm

Complexity:

Sorting the suffixes with suffix array takes 𝑂𝑂(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛) time. This can be implemented in the linear time but in our case, this is
sufficient. After that for every prefix, in order as in the given string, we are going to maintain the above segments in linear
time overall (in every step we are going to shrink current segment with only one compering of chars). For heap, every
position is going to be added exactly one time and removed at most one time. Taking all of this in to account we get the final
complexity:

𝑂𝑂(𝑛𝑛 log𝑛𝑛 + 𝑛𝑛 ⋅ 3 log𝑛𝑛) = 𝑂𝑂(𝑛𝑛 log𝑛𝑛).

Problem H: String covering

Test data:

Test corpus consists of 15 test cases. In the random string we can expect only one covering string – the string itself. Many
ideas for test generation is to create some “recursive” string that has many occurrences of prefixes in it. The “worst” case for
this is to use small number of different chars. Description of the test data with some comments is given below.

Num 𝑵𝑵 Solution Comment

00 6 3 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
01 45690 9138 Concatenation of the string 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
02 90010 10 Concatenation of the string 𝑎𝑎. . 𝑎𝑎𝑎𝑎. . 𝑏𝑏𝑏𝑏. . 𝑎𝑎𝑎𝑎
03 90000 10000 Concatenation of the string 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 with random change
04 80.000 1 Many 𝑎𝑎 with random char 𝑏𝑏
05 10.002 3334 Concatenation of the string 𝑎𝑎𝑎𝑎𝑎𝑎
06 98.904 8242 Concatenation of the string 𝑎𝑎
07 50.003 1 Random concatenation of strings 𝑎𝑎𝑎𝑎𝑎𝑎 and 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
08 96.048 16 Concatenation of the string 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 with some 𝑥𝑥𝑥𝑥𝑥𝑥
09 99.999 1 String is of the form 𝑎𝑎. . 𝑎𝑎𝑎𝑎… 𝑏𝑏𝑏𝑏. . 𝑎𝑎
10 99.999 99.999 All chars are the same
11 78950 3158 Concatenation 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎… 𝑥𝑥𝑥𝑥𝑥𝑥
12 100.000 1 Many 𝑣𝑣 with random char 𝑤𝑤
13 1 1 Only one char
14 90.000 5628 Concatenation of the string 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
15 100.000 100 Concatenation of the string 𝑎𝑎𝑎𝑎. . 𝑎𝑎𝑎𝑎

Table 1. Test data description

127

Problem I: Polygons

Problem I: Polygons
Statement:
You are given 𝑛𝑛 points with integer coordinates in the plane. After that you are given 𝑞𝑞 queries.
Each query gives you a list of indices in the originally given set of points. The points in this list form a simple polygon (one
that does not intersect itself). For each query you should output how many points from the original set are on the inside
of the given polygon.

Input:
The first line of the input contains two integers 𝑛𝑛 and q, separated with an empty space. Next 𝑛𝑛 lines each contain two
numbers, 𝑥𝑥 and 𝑦𝑦 - coordinates of a point. The 𝑞𝑞 lines that come after that each start with a number 𝑝𝑝, the number of
points that form that polygon. The rest of the line consists of 𝑝𝑝 space-separated numbers that represent indices (indices
are from 0 to 𝑛𝑛 − 1) of originally given points that form the polygon.

Output:
You should output 𝑞𝑞 lines, one for each query. Output for each query should be just one integer number: the number of
points from the original set on the inside of the polygon given in that query.

Constraints:
• 1 ≤ n ≤ 1,000
• 1 ≤ q ≤ 10,000
• Coordinates of a point are in the segment [0, 106]
• No two points are the same. Also, no three different points are on the same line.
• Vertices of the polygon do not count as being inside of it

128

Problem I: Polygons

Problem I: Polygons
Statement:
You are given 𝑛𝑛 points with integer coordinates in the plane. After that you are given 𝑞𝑞 queries.
Each query gives you a list of indices in the originally given set of points. The points in this list form a simple polygon (one
that does not intersect itself). For each query you should output how many points from the original set are on the inside
of the given polygon.

Input:
The first line of the input contains two integers 𝑛𝑛 and q, separated with an empty space. Next 𝑛𝑛 lines each contain two
numbers, 𝑥𝑥 and 𝑦𝑦 - coordinates of a point. The 𝑞𝑞 lines that come after that each start with a number 𝑝𝑝, the number of
points that form that polygon. The rest of the line consists of 𝑝𝑝 space-separated numbers that represent indices (indices
are from 0 to 𝑛𝑛 − 1) of originally given points that form the polygon.

Output:
You should output 𝑞𝑞 lines, one for each query. Output for each query should be just one integer number: the number of
points from the original set on the inside of the polygon given in that query.

Constraints:
• 1 ≤ n ≤ 1,000
• 1 ≤ q ≤ 10,000
• Coordinates of a point are in the segment [0, 106]
• No two points are the same. Also, no three different points are on the same line.
• Vertices of the polygon do not count as being inside of it

Problem I: Polygons

Example input: Example output:
7 2
0 0
0 4
4 0
4 4
2 1
3 2
2 3
3 0 1 3
3 0 2 3

1
2

Example explanation:
First polygon is a triangle whose vertices are (0, 0), (0, 4) and (4, 4). There is one point on its inside: (2, 3). Second triangle
has the vertices (0, 0), (4, 0) and (4, 4). There are two points on its inside (2, 1) and (3, 2).

Figure 1. Visualization of the given example.

> Time and memory limit: 6.0s / 64MB

129

Problem I: Polygons

Solution and analysis:
Taking each query and checking each point is on the inside of that polygon in a straightforward manner would take
𝑂𝑂(𝑛𝑛2 ⋅ 𝑞𝑞) time, which is too slow for the given constraints.
We are going to deal with this by precalculating some things, which will allow us to answer each query in linear time with
respect to the number of vertices of the polygon. For each two points from the original set, we calculate the number of points
under the line segment connecting them (that are contained in the quadriteral formed from the endpoints of the line
segment and their projections on the 𝑥𝑥 axis; we don’t count points on the edges of this quadriteral). Also, we calculate the
number of points directly under each point from the set (i.e. the ones that have equal 𝑥𝑥 and smaller 𝑦𝑦 coordinates).

A

B
under[A][B] = 3 directly_under[A] = 1

directly_under[B] = 0

A

B

Figure 1. What is precalculated.

First, we sort the points by 𝑥𝑥 coordinate, sorting points with equal 𝑥𝑥 by 𝑦𝑦. The number of points directly under each point is
easily calculated in linear time from this sorted array.
Now for each point (we’ll call it point A) we take all the points after it in this sorted array (those that have larger 𝑥𝑥, or equal 𝑥𝑥
and larger 𝑦𝑦 coordinate) and sort them by angle in respect to point A. We go through these points in this order (we’ll call the
current point B). For each point A we keep an array that counts the number of times each 𝑥𝑥 coordinate has appeared in
points B that we went through until now. We keep this array as a cumulative table in order to be able to do insertions and
calculations of the sum of the first 𝑘𝑘 elements in 𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀𝑀𝑀𝑋𝑋𝑋𝑋) time for each operation, where 𝑀𝑀𝑀𝑀𝑋𝑋𝑋𝑋 is the maximal value of 𝑥𝑥
coordinates among the set of points. For each point B we do the following:
1. We add 1 to the cumulative table in the position of the 𝑥𝑥 coordinate of point B.
2. We calculate the number of points under the line segment A-B as sum in cumulative table to the position of the 𝑥𝑥

coordinate of point B – 1.

130

Problem I: Polygons

Solution and analysis:
Taking each query and checking each point is on the inside of that polygon in a straightforward manner would take
𝑂𝑂(𝑛𝑛2 ⋅ 𝑞𝑞) time, which is too slow for the given constraints.
We are going to deal with this by precalculating some things, which will allow us to answer each query in linear time with
respect to the number of vertices of the polygon. For each two points from the original set, we calculate the number of points
under the line segment connecting them (that are contained in the quadriteral formed from the endpoints of the line
segment and their projections on the 𝑥𝑥 axis; we don’t count points on the edges of this quadriteral). Also, we calculate the
number of points directly under each point from the set (i.e. the ones that have equal 𝑥𝑥 and smaller 𝑦𝑦 coordinates).

A

B
under[A][B] = 3 directly_under[A] = 1

directly_under[B] = 0

A

B

Figure 1. What is precalculated.

First, we sort the points by 𝑥𝑥 coordinate, sorting points with equal 𝑥𝑥 by 𝑦𝑦. The number of points directly under each point is
easily calculated in linear time from this sorted array.
Now for each point (we’ll call it point A) we take all the points after it in this sorted array (those that have larger 𝑥𝑥, or equal 𝑥𝑥
and larger 𝑦𝑦 coordinate) and sort them by angle in respect to point A. We go through these points in this order (we’ll call the
current point B). For each point A we keep an array that counts the number of times each 𝑥𝑥 coordinate has appeared in
points B that we went through until now. We keep this array as a cumulative table in order to be able to do insertions and
calculations of the sum of the first 𝑘𝑘 elements in 𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀𝑀𝑀𝑋𝑋𝑋𝑋) time for each operation, where 𝑀𝑀𝑀𝑀𝑋𝑋𝑋𝑋 is the maximal value of 𝑥𝑥
coordinates among the set of points. For each point B we do the following:
1. We add 1 to the cumulative table in the position of the 𝑥𝑥 coordinate of point B.
2. We calculate the number of points under the line segment A-B as sum in cumulative table to the position of the 𝑥𝑥

coordinate of point B – 1.

Problem I: Polygons

B
Current point

A

1 1 0 10 0

Done

Not done

Figure 2. A typical state of a precalculation step.

We respond to each query in the following way. We go through the polygon in clockwise direction and for each edge, if it
goes to the right (the 𝑥𝑥 coordinate of its second point is larger than the 𝑥𝑥 coordinate of its first point) we add the number of
points under that edge to the sum, otherwise we substract this number from the sum. For each vertex, if we go through it
going to the right (the edge coming into it and the one going out of it are both to the right) we add the number of points
under it to the sum, if we go through it going to the left we subtract the number from the sum.

Clockwise
direction

+ +
+

+
-

-
--

-

Figure 3. Responding to a query.

After going through all edges and vertices of the polygon, each point outside of the polygon is counted zero times and each
point on the inside of the polygon is counted exactly once, which is exactly what we need.
Complexity:

Time complexity of initial calculation is O(n2 ⋅ log(MAXX)). After that, each query is resolved in O(n) time. The total
complexity is therefore O(n2 ⋅ log(MAXX) + q ⋅ n).

131

